
Comp 311
Functional Programming

Eric Allen, Two Sigma Investments
Robert “Corky” Cartwright, Rice University
Sağnak Taşırlar, Two Sigma Investments

Combinator Parsing

Arithmetic Expressions

 expr ::= term {“+” term | “-” term}.
 term ::= factor {“*” factor | “/” factor}.
factor ::= floatingPointNumber | “(” expr “)”.

Example Arithmetic
Expression

2 * 3 + 4 * 5 - 6

Example Arithmetic
Expression

2 * 3 + 4 * 5 - 6

factors

Example Arithmetic
Expression

2 * 3 + 4 * 5 - 6

terms

Example Arithmetic
Expression

2 * 3 + 4 * 5 - 6

expressions

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
 def expr: Parser[Any] = term~rep("+"~term | "-"~term)
 def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
 def factor: Parser[Any] = floatingPointNumber | "("~expr~")"
}

To Convert a Grammar to a
Definition with Parser Combinators
• Every production becomes a method

• The result of each method is Parser[Any]

• Insert the explicit operator ~ between two consecutive symbols
of a production

• Represent repetition with calls to the function rep instead of { }

• Represent repetitions with a separator with calls to the function
repsep

• Represent optional occurrences with opt instead of []

Exercising Our Parser

object ParseExpr extends Arith {
 def main(args: Array[String]) = {
 println("input: " + args(0))
 println(parseAll(expr, args(0)))
 }
}

An Example Parse of
Grammatical Input

scala edu.rice.cs.comp311.lectures.lecture22.ParseExpr 2*3+4*5-6
input: 2*3+4*5-6
[1.10] parsed: ((2~List((*~3)))~List((+~(4~List((*~5)))), (-~(6~List()))))

What is Returned from a
Parser

• Parsers built from strings return the string (if it matches)

• ~ combinator returns both results
• as elements of a case class named ~
• (with a toString that places the ~ infix)

• | combinator returns the result of whichever succeeds

• rep operator returns a list of its results

• opt operator returns an Option of its result

Transforming the Output of a
Parser

floatingPointNumber ^^ (_.toDouble)

JSON grammar

 value ::= obj | arr | “null” | “true” | “false” |
 stringLiteral | floatingPointNumber
 obj ::= “{” [members] “}”
 arr ::= “[” [values] “]”
members ::= member {“,” member}
 member ::= stringLiteral “:” value
 values ::= value {“,” value}

JSON Example
{
 “address book” : {
 “name” : “Eva Luate”,
 “address” : {
 “street” : “6100 Main St”
 “city” : “Houston TX”,
 “zip” : 77005
 },
 “phone numbers”: [
 “555 555-5555”,
 “555 555-6666”
]
 }
}

A Simple JSON Parser

class JSON extends JavaTokenParsers {
 def value: Parser[Any] = {
 obj | arr | stringLiteral |
 floatingPointNumber | "null" | "true" | "false"
 }
 def obj: Parser[Any] = "{"~repsep(member, ",")~"}"

 def arr: Parser[Any] = "["~repsep(value, ",")~"]"

 def member: Parser[Any] = stringLiteral~":"~value
}

Mapping JSON to Scala
• We would like to parse JSON objects into Scala objects as

follows:

• A JSON object is represented as a Map[String,Any]

• A JSON array is represented as a List[Any]

• A JSON string is represented as a String

• A JSON numeric literal is represented as a Double

• The values true, false, null are represented as
corresponding Scala values

Definition of Class ~

case class ~[+A, + B](x: A, y: B) {
 override def toString = "(" + x + "~" + y + ")"
}

Redefining Member

 def member: Parser[(String, Any)] =
 stringLiteral~":"~value ^^ { case n~":"~v =>
 (n,v)
 }

Redefining obj (Attempt 1)

def obj: Parser[Map[String, Any]] =
 "{"~repsep(member, ",")~"}" ^^ { case "{"~ms~"}" =>
 Map() ++ ms
}

Redefining obj

• We can further improve our definition of obj by using
the following parser combinators:

~> like ~ except that the left result is thrown out

<~ like ~ except that the right result is thrown out

Redefining obj (Attempt 2)

 def obj: Parser[Map[String, Any]] =
 "{"~>repsep(member, ",")<~"}" ^^ (Map() ++ _)

JSON Parser with Mapping
class JSON2 extends JavaTokenParsers {
 def obj: Parser[Map[String, Any]] =
 "{"~>repsep(member, ",")<~"}" ^^ (Map() ++ _)

 def arr: Parser[Any] = "["~>repsep(value, ",")<~"]"

 def member: Parser[(String, Any)] =
 stringLiteral~":"~value ^^ { case n~":"~v => (n,v) }

 def value: Parser[Any] = { obj | arr | stringLiteral |
 floatingPointNumber ^^ (_.toDouble) |
 "null" ^^ (x => null) |
 "true" ^^ (x => true) |
 "false" ^^ (x => false)
 }
}

Parsing a File
object JSONParseExpr extends JSON2 {
 def main(args: Array[String]) = {
 val f = Source.fromFile(args(0))
 try {
 println("input: " + args(0))
 println(parseAll(value, f.reader))
 }
 finally {
 f.close
 }
 }
}

Parsing a File

$ scala edu.rice.cs.comp311.lectures.lecture22.JSONParseExpr "sample.json"
input: sample.json
[16.1] parsed: Map("address book" -> Map("name" -> "Eva Luate", "address" ->
Map("street" -> "6100 Main St", "city" -> "Houston TX", "zip" -> 77005.0),
"phone numbers" -> List("555 555-5555", "555 555-6666")))

Scala Actors and
Concurrency

The Problem with Locks
• The JVM provides mechanisms for managing

concurrent programs through threads and locks

• Programming with locks has many drawbacks:

• Potential for deadlock

• Locks at runtime are unknown

• Threads at runtime are unknown

Scala Actors

• In Scala, concurrency is achieved through a share-
nothing message passing model

• Actors are thread-like entities with mailboxes for
receiving messages

• To implement an actor, extend scala.actors.Actor

A Simple Actor
import scala.actors._

object SimpleActor extends Actor {
 def act() {
 for (i <- 1 to 5) {
 println(“I’m acting!”)
 Thread.sleep(1000)
 }
 }
}

Starting Actors
• Actors are started by invoking their start method

as with Java threads:

SimpleActor.start()
I’m acting!
res1: scala.actors.Actor = SimpleActor$@1945696

scala > I’m acting!
I’m acting!
I’m acting!
I’m acting!

Actors Run Independently
import scala.actors._

object ShakespeareanActor extends Actor {
 def act() {
 for (i <- 1 to 5) {
 println(“To be or not to be.”)
 Thread.sleep(1000)
 }
 }
}

Actors Run Independently
SimpleActor.start(); SeriousActor.start()
res2: scala.actors.Actor = seriousActor$@1689405

scala> To be or not to be.
I’m acting!
To be or not to be.
I’m acting!
To be or not to be.
I’m acting!
To be or not to be.
I’m acting!
To be or not to be.
I’m acting!

The actor Utility Method
scala> val shakespeareanActor2 = actor {
 for (i <- 1 to 5)
 println(“That is the question.”)
 Thread.sleep(1000)
}
scala> That is the question.
That is the question.
That is the question.
That is the question.
That is the question.

Actors Communicate
Through Messages

• Send a message to an actor using !

SimpleActor ! “hello, simple actor”

Actors Communicate
Through Messages

• Actors process the messages they receive using
their receive method:

val echoActor = actor {
 while (true) {
 receive {
 case msg =>
 println(“received message: ” + msg)
 }
 }
}

Actors Communicate
Through Messages

• When an actor sends a message, it does not block

• When an actor receives a message, it is not
interrupted

• Actors ignore messages not handled in the function
passed to receive

Actors Ignore Unmatched
Messages

scala> val intActor = actor {
 receive {
 case x: Int => // I only want Ints
 println(“Got an Int: ” + x)
 }
}

Actors Ignore Unmatched
Messages

intActor ! “hello”
intActor ! math.Pi
intActor ! 12
Got an Int: 12

Actors and Threads
• The Scala runtime manages one or more native

threads for its use

• If you only work with actors you explicitly define,
you do not need to worry about how actors map to
threads

• You can view the current thread as an actor using
Actor.self

Actor.self

scala> import scala.actors.Actor._
import scala.actors.Actor._

scala> self ! “hello”
scala> self.receive { case x => x }
res1: Any = hello

Actor.self
• When using the current thread as an actor, it is

better to use receiveWithin (which takes a
timeout) than receive

• Especially if you are at the shell!

self.receiveWithin(1000) { case x => x }
res2: Any = TIMEOUT

Minimizing the Number of
Threads

• Unfortunately, threads are expensive on JVMs

• Thousands of threads vs millions of objects

• Switching threads takes hundreds or even
thousands of processor cycles

• Thus, for efficient programs, we want to minimize
the number of threads

Receive vs React

• Along with receive, actors have a react method

• Like receive, takes a partial function

• Unlike receive, it never returns

• Return type is Nothing

React Methods
• Because a react method never returns a value, it is

not necessary to preserve the method’s calling
context

• Similar to tail calls:

• With a tail call, the calling context is empty, so we
need not preserve it

• With react, the call never returns, so we need not
preserve the calling context

React Methods

• By not preserving a calling context, we can reuse:

• Space (the calling context)

• Control (the calling thread)

React Methods

• Because a react method never returns:

• It is responsible for performing all remaining
computation of an actor

• Typically, this is done by having react call its
actor’s act method as its final action

object NameResolver extends Actor {
 import java.net.{InetAddress, UnknownHostException}

 def act() {
 react {
 case (name: String, actor: Actor) =>
 actor ! getIp(name)
 act()
 case “EXIT” =>
 println(“Name resolver exiting.”)
 // quit
 case msg =>
 println(“Unhandled message” + msg)
 act()
 }
 }
 def getIp(Name: String): Option[InetAddress] = {
 try { Some(InetAddress.getByName(name)) }
 catch { case _: UnknownHostException => None }
 }
}

http://java.net

React Methods and Loop

• Calling act as the last action of react can be made
more concise with loop

• The loop function takes a thunk, calls the thunk,
then calls itself, looping forever

Using Loop
def act() {
 loop {
 react {
 case (name: String, actor: Actor) =>
 actor ! getIp(name)
 case msg =>
 println(“Unhandled message: ” + msg)
 }
 }
}

Guidelines for
Programming with Actors

Actors Should Not Block
• Design actors so that they do not block when

processing messages:

• If an actor blocks when processing a message, it
will not notice other messages

• If multiple actors block processing messages,
waiting for other actors to respond, we can end
up with circular waiting

Actors Should Not Block
• Instead of blocking, arrange for a message to

arrive that indicates the action is ready to be taken

• It is ok to use a helper actor that does block waiting
for an event (and does nothing else)

• This actor can then send an alert message to the
actor it helps

• Because the helper receives no messages, it is ok
to block

val emoter = actor {
 def emoteLater() {
 val mainActor = self
 actor {
 Thread.sleep(1000)
 mainActor ! “Emote”
 }
 }
 var emoted = 0
 emoteLater()

 loop {
 react {
 case “Emote” =>
 println(“I’m acting!”)
 emoted += 1
 if (emoted < 5)
 emoteLater()
 case msg =>
 println(“Received: ” + msg)
}}}

Non-Blocking Actors
• Because our example actor does not block, it is

free to process other messages while waiting for
the next emote message

scala> emoter ! “Hello”
scala> Receiver: hi there
I’m acting!
I’m acting!
I’m acting!

Communicate With Actors
Only Via Messages

• The key advantage of the actor model is that we
can reason about a multi-threaded program as a
collection of single-threaded programs
communicating via messages

• This advantage applies only if messages are the
only way that actors communicate

Communicate With Actors
Only Via Messages

• Do not call methods on actors explicitly — only
send messages

• Other methods might read or write private data,
which would then be modified by multiple
threads

Send Immutable Messages
• The data inside a message is shared by multiple

actors

• It is best to make that data immutable to ensure
thread safety

• An obvious way to accomplish this is to define
methods using case classes

• Receive/react methods can easily process them
with pattern matching

Make Messages
Self-Contained

• When calling a function in a single-threaded
context, a result is returned to the caller in the
calling context

• The caller “blocked” until the result was returned

• It is easy for the caller to know what to do with
the result

Make Messages
Self-Contained

• With actors and message passing, the receiver is
processing messages asynchronously

• An actor might send a message to another actor
and perform other work before it gets back a
result (via another message)

• It can be difficult for an actor to interpret the
result messages it receives

Make Messages
Self-Contained

• It helps to include in a message additional (even
redundant) context to help the receiver interpret the
message more easily

• Define an abstract datatype with variants for
each kind of message

• Consider including the message being
responded to

import scala.actors.Actor._
import java.net{InetAddress, UnknownHostException}

case class LookupIP(name: String, respondTo: Actor)
case class LookupResult (
 name: String,
 address: Option[InetAddress]
)

object NameResolver2 extends Actor {
 def act() {
 loop {
 react {
 case LookupIP(name, actor) =>
 actor ! LookupResult(name, getIp(name))
 }
 }
 }
 def getIp(name: String): Option[InetAddress] = {
 // as before
 }
}

http://java.net

Make Messages
Self-Contained

• When calling a function in a single-threaded
context, a result is returned to the caller in the
calling context

• The caller “blocks” until the result was returned

• It is easy for the caller to know what to do with
the result

Make Messages
Self-Contained

• With actors and message passing, the receiver is
processing messages asynchronously

• An actor might send a message to another actor
and perform other work before it gets back a
result (via another message)

• It can be difficult for an actor to interpret the
result messages it receives

Make Messages
Self-Contained

• It helps to include in a message additional (even
redundant) context to help the receiver interpret the
message more easily

• Define an abstract datatype with variants for
each kind of message

• Consider including the message being
responded to

import scala.actors.Actor._
import java.net{InetAddress, UnknownHostException}

case class LookupIP(name: String, respondTo: Actor)
case class LookupResult (
 name: String,
 address: Option[InetAddress]
)

object NameResolver2 extends Actor {
 def act() {
 loop {
 react {
 case LookupIP(name, actor) =>
 actor ! LookupResult(name, getIp(name))
 }
 }
 }
 def getIp(name: String): Option[InetAddress] = {
 // as before
 }
}

http://java.net

Scala Parallel
Collections

Scala Collections Classes
Include Parallel Counterparts
• scala.collection.parallel.immutable

• ParHashMap

• ParHashSet

• ParIterable

• ParMap

• ParRange

• ParSeq

• ParSet

• ParVector

Map and Flatmap

• These classes are intended to be constructed and
used just like their sequential counterparts

• Because these classes implement map, flatmap, in
parallel, for loops over them will execute in parallel

• A sequential collection can be converted into a
parallel collection using the par method

Guidelines on Parallel
Collections

• Benchmark use of parallel collections

• Do not assume you will achieve speedup for a
given program

• Their benefit is most evident when the collections
are large and we are mapping smaller,
parallelizable operations over them

