
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Krishna Palem
Prof. Vivek Sarkar
Department of Computer Science
Rice University
{palem,vsarkar}@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 5 10 September 2013

2

Acknowledgments!
•  Slides from previous offerings of COMP 515 by Prof. Ken

Kennedy
— http://www.cs.rice.edu/~ken/comp515/

3 Copyright, 1996 © Dale Carnegie & Associates, Inc.

Dependence Testing!

Allen and Kennedy, Chapter 3 (up to Section 3.3.2)

4

The General Problem!
DO i1 = L1, U1!
!DO i2 = L2, U2!
! ! !...	

! !DO in = Ln, Un!
 S1 ! !A(f1(i1,...,in),...,fm(i1,...,in)) = ...	

 S2 ! !... = A(g1(i1,...,in),...,gm(i1,...,in))!
! !ENDDO!

! !...!

!ENDDO!

ENDDO!
!

Under what conditions is the following true for iterations α and β ?	

fi (α) = gi (β) for all i, 1 ≤ i ≤ m

Note that the number of equations equals the rank of the array, 	

and the number of variables is twice the number of loops that enclose both

array references (two iteration vectors)	

4

5

Basics: Complexity!
A subscript equation is said to be

— ZIV if it contains no index (zero index variable)
— SIV if it contains only one index (single index variable)
— MIV if it contains more than one index (multiple index variables)

For Example:

 A(5,I+1,j) = A(1,I,k) + C!

! ! !First subscript equation is ZIV!

! ! !Second subscript equation is SIV!

! ! !Third subscript equation is MIV!

6

Terminology: Indices and Subscripts!
Index: Index variable for some loop surrounding a pair of

references

Subscript: A PAIR of subscript positions in a pair of array
references (corresponds to dependence equation for that
dimension)

For Example:

 A(I,j) = A(I,k) + C!

! ! !‹I,I› is the first subscript!

! ! !‹j,k› is the second subscript!

7

Basics: Separability!
•  A subscript is separable if its indices do not occur in other

subscripts

•  If two different subscripts contain the same index they are
coupled

For Example:

 A(I+1,j) = A(k,j) + C!

! ! !Both subscripts are separable!

! !A(I,j,j) = A(I,j,k) + C!

! ! !Second and third subscripts are coupled!

8

Basics: Coupled Subscript Groups!
•  Why are they important?

 Ignoring coupled subscripts may lead to imprecision in
dependence testing

e.g., is there a loop-carried dependence on A in the following
loop?

!DO I = 1, 100 !!

S1! !A(I+1,I) = B(I) + C!

S2! !D(I) = A(I,I) * E!

!ENDDO!

9

Basics: Conservative Testing!
•  Consider only linear subscript expressions
•  Finding integer solutions to system of linear Diophantine

Equations is NP-Complete
•  Most common approximation is Conservative Testing

See if you can assert
“No dependence exists between two subscripted references of the

same array”

•  Never incorrect, may be less than optimal

10

Dependence Testing: Overview!
•  Partition subscripts of a pair of array references into

separable and coupled groups

•  Classify each subscript as ZIV, SIV or MIV
•  For each separable subscript apply single subscript test. If not

done goto next step

•  For each coupled group apply multiple subscript test
•  If still not done, merge all direction vectors computed in the

previous steps into a single set of direction vectors

11

Step 1: Subscript Partitioning !
•  Partitions the subscripts into separable and minimal

coupled groups
•  Notations

// S is a set of m subscript pairs S1, S2, ...Sm each enclosed in 	

// n loops with indexes I1, I2, ... In, which is to be 	

// partitioned into separable or minimal coupled groups.	

// P is an output variable, containing the set of partitions	

// np is the number of partitions	

12

Step 2: Classify as ZIV/SIV/MIV!
•  Easy step
•  Just count the number of different indices in a subscript

equation

13

Step 3: Applying Single Subscript Tests!
•  ZIV Test
•  SIV Test

— Strong SIV Test
— Weak SIV Test

–  Weak-zero SIV
–  Weak Crossing SIV

•  SIV Tests in Complex Iteration Spaces

14

ZIV Test!
!DO j = 1, 100 !!

S! ! !A(e1) = A(e2) + B(j)!

!ENDDO!

!

!

e1,e2 are constants or loop invariant symbols!
If (e1-e2)!=0 No Dependence exists!
!
Program analyses that can improve the accuracy of this test include

constant propagation, value numbering, and symbolic “definitely
different” analysis (inferring that e1 = e2 + nonzero-constant)!

15

Strong SIV Test!
•  Strong SIV subscripts are of the form

 where a ≠ 0

•  For example the following are strong SIV subscripts

•  Strong subscripts are also referred to as “uniformly generated”

16

Strong SIV Test Example!

DO k = 1, 100 !
!DO j = 1, 100 !!

S1! !A(j+1,k) = ...!
S2! ! ... = A(j,k) + 32!
!ENDDO !

ENDDO!

17

Strong SIV Test!

Dependence exists if there is an integer value of d within loop bounds,

18

Weak SIV Tests!
•  Weak SIV subscripts are of the form

 where a1 ≠ 0 (without loss of generality)

•  For example the following are weak SIV subscripts

a1i + c1,a2i + c2

i +1,5
2i +1,i + 5
2i +1,−2i

19

Weak-zero SIV Test!
•  Special case of Weak SIV where one of the coefficients (a2) of

the index is zero

•  The test consists merely of checking whether the solution is an
integer and is within loop bounds

i = c2 − c1
a1

20

Weak-zero SIV Test!

21

Weak-zero SIV & Loop Peeling!
!DO i = 1, N!

S1! ! !Y(i, N) = Y(1, N) + Y(N, N)!

! !ENDDO!

Can be loop peeled to... ! ! ! !!

 !Y(1, N) = Y(1, N) + Y(N, N)!

!DO i = 2, N-1!

S1! ! !Y(i, N) = Y(1, N) + Y(N, N)!

!ENDDO!

! !Y(N, N) = Y(1, N) + Y(N, N)!

22

Weak-crossing SIV Test!
•  Special case of Weak SIV where the coefficients of the index

are equal in magnitude but opposite in sign i.e., a2 = -a1

•  The test consists merely of checking whether the solution index
 is 1. within loop bounds and is

 2. either an integer or has a non-integer

 part equal to 1/2

i = c2 − c1
2a1

23

Weak-crossing SIV Test!

24

Weak-crossing SIV & Loop Splitting!

! ! !DO i = 1, N!

!S1 ! !A(i) = A(N-i+1) + C!

! ! !ENDDO!

!

This loop can be split into...!

! ! !DO i = 1,(N+1)/2!

! ! ! !A(i) = A(N-i+1) + C!

! ! !ENDDO!

! ! !DO i = (N+1)/2 + 1, N!

! ! ! !A(i) = A(N-i+1) + C!

! ! !ENDDO!

24

25

Complex Iteration Spaces!
•  Till now we have applied the tests only to rectangular iteration

spaces

•  These tests can also be extended to apply to triangular or
trapezoidal loops
— Triangular: One of the loop bounds is a function of at least one

outer loop index
— Trapezoidal: Both the loop bounds are functions of at least one

outer loop index

26

Complex Iteration Spaces!
•  For example consider this special case of a strong

SIV subscript
!DO I = 1,N!

! ! !DO J = L0 + L1*I, U0 + U1*I!

S1! ! !A(J + d) = !

S2! ! != A(J) + B!

! ! !ENDDO!

!ENDDO!

27

Complex Iteration Spaces!
•  Strong SIV test gives dependence if

•  Unless this inequality is violated for all values of I in its
iteration range, we must assume a dependence in the loop

d ≤U0 − L0 + U1 − L1()I

I ≥
d − U0 − L0()
U1 − L1

28

Index Set Splitting!
DO I = 1,100!

! !DO J = 1, I!

S1! !A(J+20) = A(J) + B!

! !ENDDO!

ENDDO!

!

For values of

there is no dependence
 !

I <
d − U0 − L0()
U1 − L1

=
20 − −1()

1
= 21

28

29

Index Set Splitting!
•  This condition can be used to partially vectorize S1 by Index

set splitting as shown
! !DO I = 1,20!
! ! !DO J = 1, I!

S1a! ! !A(J+20) = A(J) + B!

! ! !ENDDO!

! !ENDDO!

!!

DO I = 21,100!

! ! !DO J = 1, Ix!

S1b! ! !A(J+20) = A(J) + B!

! ! !ENDDO!

!ENDDO!

!

Now the inner loop for the first nest can be vectorized

29

30

Coupling makes these tests imprecise!
!DO I = 1,100!

! ! !DO J = 1, I!

S1! ! !A(J+20,I) = A(J,19) + B!

! ! !ENDDO!

!ENDDO!

•  We will report dependence even if there isn’t any
•  But such cases are very rare

31

Breaking Conditions!
•  Consider the following example
! !DO I = 1, L!

S1! ! !A(I + N) = A(I) + B!

! !ENDDO!

•  If L<=N, then there is no dependence from S1to itself

•  L<=N is called the Breaking Condition

32

Using Breaking Conditions!
•  Using breaking conditions the compiler can generate

alternative code
! !IF (L<=N) THEN!
! ! !A(N+1:N+L) = A(1:L) + B!

! !ELSE!

! ! !DO I = 1, L!

S1! ! ! !A(I + N) = A(I) + B!

! ! !ENDDO!

! !ENDIF!

