
COMP 322: Fundamentals of
Parallel Programming

Lecture 26: Java synchronized statement (contd),
Advanced Locking

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 26 20 March 2013

COMP 322, Spring 2013 (V. Sarkar)

Solution to Worksheet #25: Java Threads
Write a sketch of the pseudocode for a Java threads program that exhibits
a data race using start() and join() operations.

1. // Start of thread t0 (main program)
2. sum1 = 0; sum2 = 0; // Assume that sum1 & sum2 are fields
3. // Compute sum1 (lower half) and sum2 (upper half) in parallel
4. final int len = X.length;
5. Runnable r1 = new Runnable() {
6. public void run(){ for(int i=0 ; i < len/2 ; i++) sum1+=X[i];}
7. };
8. Thread t1 = new Thread(r1);
9. t1.start();
10. Runnable r2 = new Runnable() {
11. public void run(){ for(int i=len/2 ; i < len ; i++) sum2+=X[i];}
12. };
13. Thread t2 = new Thread(r2);
14. t2.start();
15. int sum = sum1 + sum2; // data race between t0 & t1, and t0 & t2
16. t1.join(); t2.join();

2

COMP 322, Spring 2013 (V. Sarkar)

Acknowledgments for Today’s Lecture
• “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David

Holmes, OOPSLA 2007 tutorial slides
—Contributing authors: Doug Lea, Brian Goetz

• “Java Concurrency Utilities in Practice”, Joe Bowbeer, David Holmes,
OOPSLA 2007 tutorial slides
—Contributing authors: Doug Lea, Tim Peierls, Brian Goetz

• ECE 3005 course slides from Georgia Tech
—http://users.ece.gatech.edu/~copeland/jac/3055-05/ppt/ch07-sync-b.ppt

• A Sophomoric Introduction to Shared-Memory Parallelism and
Concurrency, Lecture 6, Dan Grossman, U. Washington
—http://www.cs.washington.edu/homes/djg/teachingMaterials/

grossmanSPAC_lec6.pptx

3

COMP 322, Spring 2013 (V. Sarkar)

Complete Bounded Buffer using Java
Synchronization (Recap)

public class BoundedBuffer implements Buffer
{
 private static final int BUFFER SIZE = 5;
 private int count, in, out;
 private Object[] buffer;
 public BoundedBuffer() { // buffer is initially empty
 count = 0;
 in = 0;
 out = 0;
 buffer = new Object[BUFFER SIZE];
 }
 public synchronized void insert(Object item) { // See previous slides
 }
 public synchronized Object remove() { // See previous slides
 }
}

4

COMP 322, Spring 2013 (V. Sarkar)

insert() with wait/notify Methods
1.public synchronized void insert(Object item) {
2.!while (count == BUFFER SIZE) {
3.!! ! try {

4.!! ! ! wait();
5.!! ! }

6.!! ! catch (InterruptedException e) { }
7.!}
8.!++count;

9.!buffer[in] = item;
10.! in = (in + 1) % BUFFER SIZE;

11.! notify(); // Should we use notifyall() instead?
12.}

5

COMP 322, Spring 2013 (V. Sarkar)

remove() with wait/notify Methods
1.public synchronized Object remove() {
2.!Object item;
3.!while (count == 0) {

4.!! ! try {
5.!! ! ! wait();

6.!! ! }
7.!! ! catch (InterruptedException e) { }
8.!}

9.!--count;
10.! item = buffer[out];

11.! out = (out + 1) % BUFFER SIZE;
12.! notify(); // Should we use notifyall() instead?
13.! return item;

14.}

6

COMP 322, Spring 2013 (V. Sarkar)7

Entry and Wait Sets
Scenario for BUFFER_SIZE = 1 with multiple producers (P0, P1, ...) and
multiple consumers (C0, C1, ...)

Time-step Entry set Buffer state Wait set
t P0 EMPTY C0, C1
t+1 C0, P1 FULL C1
t+2 C0 FULL P1, C1

Problem: notify() may select the “wrong” thread each time, leading to
livelock ⇒ use notifyAll() instead.

COMP 322, Spring 2013 (V. Sarkar)

notify() vs. notifyAll() --- Recap
• notify() selects an arbitrary thread from the wait set.

—This may not be the thread that you want to be selected.

—Java does not allow you to specify the thread to be selected

• notifyAll() removes ALL threads from the wait set and places them
in the entry set. This allows the threads to decide among
themselves who should proceed next.

• notifyAll() is a conservative strategy that works best when multiple
threads may be in the wait set

8

COMP 322, Spring 2013 (V. Sarkar)

Two Tips for working with Java Threads
• Any variable from an outer scope that is accessed in an

anonymous inner class (e.g., in the run() method) must be
declared final.

final int len = X.length;

Runnable r = new Runnable() {

 public void run() {

 for(int i=0 ; i < len/2 ; i++) sum1 += X[i];

 }

};

• Remember to call the start() method on any thread that you create.
Otherwise, the thread’s computation does not get executed.

 Thread t = new Thread(r); t.start();

9

COMP 322, Spring 2013 (V. Sarkar)

Cancelling Threads: Interruption

• Problem: how do we shut down a thread like a web server?

• Need to communicate that shutdown has been requested
—Could set a flag that is polled in the main loop

But main loop could be blocked in accept()

• Interruption provides a means of signalling a request to another
thread

• Each Thread has an “interrupted status” which is
—Set when interrupt() method is invoked on it
—Queried by isInterrupted() method

• Many blocking methods respect interruption requests and return
early by throwing checked InterruptedException
— Object.wait()
—Throwing IE usually clears interrupted status

10

COMP 322, Spring 2013 (V. Sarkar)

Calling methods that may throw
InterruptedException

• Many methods in Java thread libraries may throw an
InterruptedException e.g., <thread>.join(), <object>.wait(),

• When calling any such method, you will either need to include each
call to join() in a try-catch block, or add a “throws
InterruptedException” clause to the definition of the method that
includes the call to join()

• Try-catch example

 public class Foo implements Runnable {
 public void run() {
 try {
 t1.join();
 }
 catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 } } }

11

COMP 322, Spring 2013 (V. Sarkar)

TrafficSignal example (throws clause)
• The wait methods will

—Atomically release the lock and block the current thread
—Reacquire lock before returning

• notify() means wake up one waiting thread
• notifyAll() means wake up all waiting threads

 public class TrafficSignal {
 public enum Color { GREEN, YELLOW, RED };
 private Color color;
 public synchronized void setColor(Color color) {
 this.color = color;
 notifyAll();
 }
 public synchronized void awaitGreen() throws InterruptedException

{
 while (color != Color.GREEN) wait(); // waits on “this” object
 }
 }

12

COMP 322, Spring 2013 (V. Sarkar)

Responses to Interruption

• Re-throw IE
—So caller can handle interruption request

• Cancel and return early
—Clean up and exit without signalling an error
—May require rollback or recovery

• Ignore interruption
—When it is too dangerous to stop
—Should re-assert interrupted status before returning

• Postpone interruption
—Remember that interrupt occurred
—Finish what you are doing and then throw IE

• Throw a general failure exception
—When interruption is one of many reasons method can fail

13

COMP 322, Spring 2013 (V. Sarkar)

Example: Shutting Down the Web Server
1. public class WebServerWithShutdown {
2. private final ServerSocket server;
3. private Thread serverThread;
4. public WebServerWithShutdown(int port) throws IOException {
5. server = new ServerSocket(port);
6. server.setSoTimeout(5000); // so we can check for interruption
7. }
8. public synchronized void shutdownServer() throws IE..,IOException {
9. if (serverThread == null) throw new IllegalStateException();
10. serverThread.interrupt();
11. serverThread.join(5000); // wait 5s before closing socket
12. server.close(); // to give thread a chance to cleanup
13. }
14. public synchronized void startServer() {
15. if (serverThread == null) {
16. (serverThread = new Thread() {
17. public void run() {
18. while (!Thread.interrupted()) {
19. try { processRequest(server.accept()); }
20. catch (SocketTimeoutException e) { continue; }
21. catch (IOException ex) { /* log it */ }
22. }
23. }
24. }).start();
25. }
26. }
27. }

Note: shutdownServer can be
harmlessly called more than once

14

COMP 322, Spring 2013 (V. Sarkar)

Use of class objects in synchronized
statements/methods

• A class object exists for every class
• static synchronized methods lock the class object
• class object can be locked explicitly:

– synchronized(Foo.class) { /* ... */ }

• No connection between locking the Class object and locking an
instance of the class
—Locking the Class object does not lock any instance
—Instance methods that use static variables must synchronize access to

them explicitly by locking the Class object
Always use the class literal to get reference to Class object—not
this.getClass() as you may access a subclass object

15

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent

• General purpose toolkit for developing concurrent applications
—import java.util.concurrent.*

• Goals: “Something for Everyone!”
—Make some problems trivial to solve by everyone

Develop thread-safe classes, such as servlets, built on concurrent
building blocks like ConcurrentHashMap

—Make some problems easier to solve by concurrent programmers
Develop concurrent applications using thread pools, barriers,

latches, and blocking queues
—Make some problems possible to solve by concurrency experts

Develop custom locking classes, lock-free algorithms

• HJ approach
—Build HJ runtime on top of java.util.concurrent library

16

COMP 322, Spring 2013 (V. Sarkar)

Key Functional Groups in j.u.c.
• Atomic variables

—The key to writing lock-free algorithms

• Concurrent Collections:
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Synchronizers: Semaphore, Latch, Barrier, Exchanger
—Ready made tools for thread coordination

17

COMP 322, Spring 2013 (V. Sarkar)

Locks

Example of hand-over-hand locking:
• L1.lock() … L2.lock() … L1.unlock() … L3.lock() … L2.unlock() ….

18

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent.locks.Lock interface
 interface Lock {

 void lock();

 void lockInterruptibly() throws InterruptedException;

 boolean tryLock(); // return false if lock is not obtained

 boolean tryLock(long timeout, TimeUnit unit)

 throws InterruptedException;

 void unlock();

 Condition newCondition();

 // can associate multiple condition vars with lock

}

• java.util.concurrent.locks.Lock interface is implemented by
java.util.concurrent.locks.ReentrantLock class

19

COMP 322, Spring 2013 (V. Sarkar)

Simple ReentrantLock() example

20

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent.locks.condition interface
• Can be allocated by calling ReentrantLock.newCondition()

• Supports multiple condition variables per lock
• Methods supported by an instance of condition

—void await() // NOTE: not wait
– Causes current thread to wait until it is signaled or interrupted
– Variants available with support for interruption and timeout

—void signal() // NOTE: not notify
– Wakes up one thread waiting on this condition

—void signalAll() // NOTE: not notifyAll()
– Wakes up all threads waiting on this condition

• For additional details see
—http://download.oracle.com/javase/1.5.0/docs/api/java/util/

concurrent/locks/Condition.html

21

COMP 322, Spring 2013 (V. Sarkar)

BoundedBuffer implementation using
two conditions, notFull and notEmpty

class BoundedBuffer {
 final Lock lock = new ReentrantLock();
 final Condition notFull = lock.newCondition();
 final Condition notEmpty = lock.newCondition();

 final Object[] items = new Object[100];
 int putptr, takeptr, count;

 . . .

22

COMP 322, Spring 2013 (V. Sarkar)

BoundedBuffer implementation using two
conditions, notFull and notEmpty (contd)

 public void put(Object x) throws InterruptedException {
 lock.lock();
 try {
 while (count == items.length) notFull.await();
 items[putptr] = x;
 if (++putptr == items.length) putptr = 0;
 ++count;
 notEmpty.signal();
 } finally {
 lock.unlock();
 }
 }

23

COMP 322, Spring 2013 (V. Sarkar)

BoundedBuffer implementation using two
conditions, notFull and notEmpty (contd)
 public Object take() throws InterruptedException {
 lock.lock();
 try {
 while (count == 0) notEmpty.await();
 Object x = items[takeptr];
 if (++takeptr == items.length) takeptr = 0;
 --count;
 notFull.signal();
 return x;
 } finally {
 lock.unlock();
 }
 }

24

COMP 322, Spring 2013 (V. Sarkar)

Reading vs. writing
• Recall that the use of synchronization is to protect interfering

accesses
—Multiple concurrent reads of same memory: Not a problem
—Multiple concurrent writes of same memory: Problem
—Multiple concurrent read & write of same memory: Problem

So far:
—If concurrent write/write or read/write might occur, use synchronization

to ensure one-thread-at-a-time

But:
—This is unnecessarily conservative: we could still allow multiple

simultaneous readers

Consider a hashtable with one coarse-grained lock
—So only one thread can perform operations at a time

But suppose:
—There are many simultaneous lookup operations
— insert operations are very rare

25

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent.locks.ReadWriteLock
interface

 interface ReadWriteLock {

 Lock readLock();

 Lock writeLock();

 }

• Even though the interface appears to just define a pair of locks, the
semantics of the pair of locks is coupled as follows
—Case 1: a thread has successfully acquired writeLock().lock()

– No other thread can acquire readLock() or writeLock()
—Case 2: no thread has acquired writeLock().lock()

– Multiple threads can acquire readLock()
– No other thread can acquire writeLock()

• java.util.concurrent.locks.ReadWriteLock interface is implemented by
java.util.concurrent.locks.ReadWriteReentrantLock class

26

COMP 322, Spring 2013 (V. Sarkar)

Example code
class Hashtable<K,V> {
 …
 // coarse-grained, one lock for table
 ReadWriteLock lk = new ReentrantReadWriteLock();
 V lookup(K key) {
 int bucket = hasher(key);
 lk.readLock().lock(); // only blocks writers
 … read array[bucket] …
 lk.readLock().unlock();
 }
 void insert(K key, V val) {
 int bucket = hasher(key);
 lk.writeLock().lock(); // blocks readers and writers
" … write array[bucket] …
 lk.writeLock().unlock();
 }
}

27

COMP 322, Spring 2013 (V. Sarkar)

Announcements
• Homework 4 due on Friday, March 22nd

• Week 8 Lecture Quiz due on Friday, March 22nd

• Week 9 lab work due via turn-in as usual, but there is no Week 9
Lab Quiz

• Guest lecture on Friday (March 22nd) by Prof. Swarat Chaudhuri
on “Speculative parallelization of isolated blocks”

28

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #26: use of tryLock()

Extend the transferFunds() method from Lecture 25 to use library locks with
tryLock() instead of synchronized, and to return a boolean value --- true if it
succeeds in obtaining in obtaining both locks and performing the transfer,
and false otherwise. Sketch your answer below using pseudocode. Can
you create a deadlock with multiple calls to transferFunds() in parallel?

1. public void transferFunds(Account from, Account to, int amount) {
2. synchronized (from) {
3. synchronized (to) {
4. from.subtractFromBalance(amount);
5. to.addToBalance(amount);
6. }
7. }
8. }

29

Name 1: ___________________ Name 2: ___________________

