
COMP 322: Fundamentals of
Parallel Programming

Lecture 28: Java Executors and Synchronizers

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 28 25 March 2013

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #26 solution: use of tryLock()
Extend the transferFunds() method from Lecture 25 to use library locks with
tryLock() instead of synchronized, and to return a boolean value --- true if it
succeeds in obtaining in obtaining both locks and performing the transfer,
and false otherwise. Sketch your answer below using pseudocode. Can
you create a deadlock with multiple calls to transferFunds() in parallel?

1. public boolean transferFunds(Account from, Account to,
2. int amount) {
3. // Assume that each Account object has a lock field of
4. // a type/class that implements java.util.concurrent.locks.Lock
5. // Assume that no exception can be thrown in this code
6. // Calls to this method can never lead to a deadlock
7. if (! from.lock.trylock()) return false;
8. if (! to.lock.trylock()) return false;
9. from.subtractFromBalance(amount); to.addToBalance(amount);
10. from.lock.unlock(); to.lock.unlock();
11. return true;
12. }

2

COMP 322, Spring 2013 (V. Sarkar)

Acknowledgments for Today’s Lecture
• “Introduction to Concurrent Programming in Java”, Joe Bowbeer, David

Holmes, OOPSLA 2007 tutorial slides
—Contributing authors: Doug Lea, Brian Goetz

• “Java Concurrency Utilities in Practice”, Joe Bowbeer, David Holmes,
OOPSLA 2007 tutorial slides
—Contributing authors: Doug Lea, Tim Peierls, Brian Goetz

• “Java Concurrency in Practice”, Brian Goetz with Tim Peierls, Joshua
Bloch, Joseph Bowbeer, David Holmes and Doug Lea. Addison-Wesley,
2006.

• “Engineering Fine-Grained Parallelism Support for Java 7”, Doug Lea,
July 2010.

• “A brief intro to: Parallelism, Threads, and Concurrency”, Tom Horton, CS
2110 lecture, U. Virginia

—http://www.cs.virginia.edu/~cs201/slides/cs2110-16-parallelprog.ppt

3

COMP 322, Spring 2013 (V. Sarkar)

Outline
• Java Executors

• Java Synchronizers

4

COMP 322, Spring 2013 (V. Sarkar)

Key Functional Groups in
java.util.concurrent

• Atomic variables
—The key to writing lock-free algorithms

• Concurrent Collections:
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Synchronizers: Semaphore, Latch, Barrier, Exchanger
—Ready made tools for thread coordination

5

COMP 322, Spring 2013 (V. Sarkar)

Thread Creation Patterns

• Thus far, we have studied two thread creation patterns for Java
threads
—Single-threaded (all requests are executed on a single thread)
—Thread-per-task (a new thread is created for each new request)
—Both have problems

• Single-threaded: doesn't scale, poor throughput and response time

• Thread-per-task: problems with unbounded thread creation
—Overhead of thread startup/teardown incurred per request
—Creating too many threads leads to OutOfMemoryError
—Threads compete with each other for resources

• Better approach: use a thread pool
—Set of dedicated threads feeding off a common work queue
—This is what the HJ runtime does (with different queue data structures

used by different scheduling algorithms)

6

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent.Executor interface
• Framework for asynchronous task execution

• A design pattern with a single-method interface
—interface Executor { void execute(Runnable w); }

• Separate work from workers (what vs how)
—ex.execute(work), not new Thread(..).start()

• Cancellation and shutdown support

• Usually created via Executors factory class
—Configures flexible ThreadPoolExecutor
—Customize shutdown methods, before/after hooks, saturation policies,

queuing

• Normally use group of threads: ExecutorService

7

COMP 322, Spring 2013 (V. Sarkar)

Think Tasks, not Threads
(as you’ve already been doing in HJ ...)

• Executor framework provides services for executing tasks in
threads
— Runnable is an abstraction for tasks
— Executor is an interface for executing tasks

• Thread pools are specific kinds of executors
exec = Executors.newFixedThreadPool(nThreads);

 final Socket sock = server.accept();

 exec.execute(new Runnable() {

 public void run() {

 processRequest(sock);

 }});
—This will create a fixed-sized thread pool
—When those threads are busy, additional tasks submitted to

exec.execute() are queued up

8

COMP 322, Spring 2013 (V. Sarkar)

Executor Framework Features

• There are a number of factory methods in Executors
— newFixedThreadPool(n), newCachedThreadPool(),
newSingleThreadedExecutor()

• Can also instantiate ThreadPoolExecutor directly

• Can customize the thread creation and teardown behavior
—Core pool size, maximum pool size, timeouts, thread factory

• Can customize the work queue
—Bounded vs unbounded
—FIFO vs priority-ordered

• Can customize the saturation policy (queue full, maximum
threads)
—discard-oldest, discard-new, abort, caller-runs

• Execution hooks for subclasses
— beforeExecute(), afterExecute()

9

COMP 322, Spring 2013 (V. Sarkar)

ExecutorService interface

• ExecutorService extends Executor interface with lifecycle
management methods e.g.,
— shutdown()

Graceful shutdown – stop accepting tasks, finish
executing already queued tasks, then terminate

— shutdownNow()
Abrupt shutdown – stop accepting tasks, attempt to

cancel running tasks, don't start any new tasks, return
unstarted tasks

• An ExecutorService is a group of thread objects, each running
some variant of the following loop
— while (…) { get work and run it; }

• ExecutorService’s take responsibility for the threads they create
—Service owner starts and shuts down ExecutorService
— ExecutorService starts and shuts down threads

10

COMP 322, Spring 2013 (V. Sarkar)

Multi-Threaded Web Server with
Executor Service (1 of 3)

1. public class PooledWebServer {
2. private final ServerSocket server;
3. private ExecutorService exec;

5. public PooledWebServer(int port) throws IOException {
6. server = new ServerSocket(port);
7. server.setSoTimeout(5000);
8. }
9.

11

COMP 322, Spring 2013 (V. Sarkar)

Multi-Threaded Web Server with
Executor Service (2 of 3)

10. public synchronized void startServer(int nThreads) {
11. if (exec == null) {
12. exec = Executors.newFixedThreadPool(nThreads + 1);
13. exec.execute(new Runnable() { // outer “async” listens to socket
14. public void run() {
15. while (!Thread.interrupted()) {
16. try {
17. final Socket sock = server.accept();
18. exec.execute(new Runnable(){// inner “async” processes request
19. public void run() { processRequest(sock); }
20. });
21. }
22. catch (SocketTimeoutException e) { continue; }
23. catch (IOException ex) { /* log it */ }
24. }
25. }
26. });
27. }
28. }

12

COMP 322, Spring 2013 (V. Sarkar)

Multi-Threaded Web Server with
Executor Service (3 of 3)

29. public synchronized void stopServer()
30. throws InterruptedException {
31. if (exec == null)
32. throw new IllegalStateException(); // never started
33. if (!exec.isTerminated()) {
34. exec.shutdown();
35. exec.awaitTermination(5L, TimeUnit.SECONDS);
36. server.close();
37. }
38. } // stopServer()
39. } // class PooledWebServer

13

COMP 322, Spring 2013 (V. Sarkar)

ThreadPoolExecutor
• Sophisticated ExecutorService implementation with numerous

tuning parameters
—Core and maximum pool size

Thread created on task submission until core size reached
Additional tasks queued until queue is full
Thread created if queue full until maximum size reached
Note: unbounded queue means the pool won’t grow above core size

—Keep-alive time
Threads above the core size terminate if idle for more than the

keep-alive time
In JDK 6 core threads can also terminate if idle

—Pre-starting of core threads, or else on demand
• NOTE: the HJ work-sharing runtime system uses one ThreadPoolExecutor

per place to execute async tasks

• We will learn about “places” later in the course

14

COMP 322, Spring 2013 (V. Sarkar)

Working with ThreadPoolExecutor
• ThreadFactory used to create new threads

—Default: Executors.defaultThreadFactory

• Queuing strategies: must be a BlockingQueue<Runnable>
—Direct hand-off via SynchronousQueue: zero capacity; hands-off to

waiting thread, else creates new one if allowed, else task rejected
—Bounded queue: enforces resource constraints, when full permits pool to

grow to maximum, then tasks rejected
—Unbounded queue: potential for resource exhaustion but otherwise never

rejects tasks

• Queue is used internally
—Use remove or purge to clear out cancelled tasks
—You should not directly place tasks in the queue

Might work, but you need to rely on internal details

• Subclass customization hooks: beforeExecute and afterExecute

15

COMP 322, Spring 2013 (V. Sarkar)

Java ForkJoin Framework
• Designed to support a common need

– Recursive divide and conquer pattern
– For small problems (below cutoff threshold), execute sequentially
– For larger problems

• Define a task for each subproblem
• Library provides

– a Thread manager, called a ForkJoinPool
– Methods to send your subtask objects to the pool to be run,

and your call waits until they are done
– The pool handles the multithreading well

• The “thread manager”
– Used when calls are made to RecursiveTask’s methods fork(),

invokeAll(), etc.
– Supports limited form of “work-stealing”

16

COMP 322, Spring 2013 (V. Sarkar)

Using ForkJoinPool

• ForkJoinPool implements the ExecutorService
interface

• Create a ForkJoinPool “thread-manager” object
• Create a task object that extends RecursiveTask

– Create a task-object for entire problem and call
invoke(task) on your ForkJoinPool

• Your task class’ compute() is like Thread.run()
– It has the code to do the divide and conquer
– First, it must check if small problem – don’t use

parallelism, solve without it
– Then, divide and create >1 new task-objects. Run them:

• Either with invokeAll(task1, task2, …). Waits for all to complete.
• Or calling fork() on first, then compute() on second, then join()

17

COMP 322, Spring 2013 (V. Sarkar)

Using ForkJoin framework vs. Thread
class

To use the ForkJoin Framework:

Don’t subclass Thread Do subclass RecursiveTask<V>

Don’t override run Do override compute

Don’t call start Do call invoke, invokeAll, fork

Don’t just call join Do call join which returns answer

��Do call invokeAll on multiple tasks

18

COMP 322, Spring 2013 (V. Sarkar)

Mergesort Example
• Top-level call. Create “main” task and submit

1. public static void mergeSortFJRecur(Comparable[] list,

2. int first, int last) {

3. if (last - first < RECURSE_THRESHOLD) {

4. MergeSort.insertionSort(list, first, last);

5. return;

6. }

7. Comparable[] tmpList = new Comparable[list.length];

8. threadPool.invoke(

9. new SortTask(list, tmpList, first, last));

10. }

19

COMP 322, Spring 2013 (V. Sarkar)

Mergesort’s Task-Object Nested Class
11. static class SortTask extends RecursiveAction {

12.! Comparable[] list;

13.! Comparable[] tmpList;

14.! int first, last;

15.! public SortTask(Comparable[] a, Comparable[] tmp,

16. int lo, int hi) {

17.! ! this.list = a; this.tmpList = tmp;

18.! ! this.first = lo; this.last = hi;

19.! }

20

COMP 322, Spring 2013 (V. Sarkar)

compute() method contains “async” body
20. protected void compute() {

21. if (last - first < RECURSE_THRESHOLD)

22. MergeSort.insertionSort(list, first, last);

23. else {

24. int mid = (first + last) / 2;

25. !SortTask task1 =

26. new SortTask(list, tmpList, first, mid);

27.! SortTask task2 =

28. new SortTask(list, tmpList, mid+1, last);

29.! invokeAll(task1, task2); // Two async’s + finish

30.! MergeSort.merge(list, first, mid, last);

31. }

32. } // compute()

21

COMP 322, Spring 2013 (V. Sarkar)

Outline
• Java Executors

• Java Synchronizers

22

COMP 322, Spring 2013 (V. Sarkar)

Key Functional Groups in
java.util.concurrent

• Atomic variables
—The key to writing lock-free algorithms

• Concurrent Collections:
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Synchronizers: Semaphore, Latch, Barrier, Exchanger
—Ready made tools for thread coordination

23

COMP 322, Spring 2013 (V. Sarkar)

j.u.c Synchronizers --- common patterns
in HJ’s phaser construct

• Class library includes several state-dependent synchronizer
classes
— CountDownLatch – waits until latch reaches terminal state
— Semaphore – waits until permit is available
— CyclicBarrier – waits until N threads rendezvous
— Phaser – extension of CyclicBarrier with dynamic parallelism
— Exchanger – waits until 2 threads rendezvous
— FutureTask – waits until a computation has completed

• These typically have three main groups of methods
—Methods that block until the object has reached the right state

Timed versions will fail if the timeout expired
Many versions can be cancelled via interruption

—Polling methods that allow non-blocking interactions
—State change methods that may release a blocked method

24

COMP 322, Spring 2013 (V. Sarkar)

CountDownLatch

• A counter that releases waiting threads when it reaches zero
—Allows one or more threads to wait for one or more events

—Initial value of 1 gives a simple gate or latch

CountDownLatch(int initialValue)

• await: wait (if needed) until the counter is zero

—Timeout version returns false on timeout

• countDown: decrement the counter if > 0

• Query: getCount()

• Very simple but widely useful:
—Replaces error-prone constructions ensuring that a group of threads all wait for a

common signal

25

COMP 322, Spring 2013 (V. Sarkar)

Example: using j.u.c.CountDownLatch to
implement finish

• Problem: Run N tasks concurrently in N threads and wait until all
are complete
—Use a CountDownLatch initialized to the number of threads

1. public static void runTask(int numThreads, final Runnable task)
2. throws InterruptedException {
3. final CountDownLatch done = new CountDownLatch(numThreads);
4. for (int i=0; i<numThreads; i++) {
5. Thread t = new Thread() {
6. public void run() {
7. try {

 task.run();
 } finally {
 done.countDown(); // I'm done

8. }
 }};
 t.start();

9. }
10. done.await(); // wait for all threads to finish
11. }

26

COMP 322, Spring 2013 (V. Sarkar)

Semaphores
• Conceptually serve as “permit” holders

—Construct with an initial number of permits
— acquire: waits for permit to be available, then “takes” one
— release: “returns” a permit
—But no actual permits change hands

The semaphore just maintains the current count
No need to acquire a permit before you release it

• “fair” variant hands out permits in FIFO order

• Supports balking and timed versions of acquire

• Applications:
—Resource controllers
—Designs that otherwise encounter missed signals

Semaphores ‘remember’ how often they were signalled

27

COMP 322, Spring 2013 (V. Sarkar)

Bounded Blocking Concurrent List
Example

• Concurrent list with fixed capacity
—Insertion blocks until space is available

• Tracking free space, or available items, can be done using a
Semaphore

• Demonstrates composition of data structures with library
synchronizers
—Easier than modifying implementation of concurrent list directly

28

COMP 322, Spring 2013 (V. Sarkar)

Bounded Blocking Concurrent List
1. public class BoundedBlockingList {

2. final int capacity;

3. final ConcurrentLinkedList list = new ConcurrentLinkedList();
4. final Semaphore sem;

5. public BoundedBlockingList(int capacity) {

6. this.capacity = capacity;

7. sem = new Semaphore(capacity);

8. }
9. public void addFirst(Object x) throws InterruptedException {

10. sem.acquire();

11. try { list.addFirst(x); }

12. catch (Throwable t){ sem.release(); rethrow(t); }

13. }
14. public boolean remove(Object x) {

15. if (list.remove(x)) { sem.release(); return true; }

16. return false;

17. }

18. … } // BoundedBlockingList

29

COMP 322, Spring 2013 (V. Sarkar)30

Callable Objects can be used to create
Future Tasks in Java

• Any class that implements java.lang.Callable<V> must provide a
call() method with return type V

• Sequential example with Callable interface

COMP 322, Spring 2013 (V. Sarkar)31

4 steps to create future tasks using
Callable objects

1. Create a parameter-less callable closure using a
statement like “Callable<Object> c = new
Callable<Object>() {public Object call() { return ...; }}; ”

2. Encapsulate the closure as a task using a statement
like “FutureTask<Object> ft = new
FutureTask<Object>(c);”

3. Start executing the task in a new thread by issuing the
statement, “new Thread(ft).start();”

4. Wait for the task to complete, and get its result by
issuing the statement, “Object o = ft.get();”.

COMP 322, Spring 2013 (V. Sarkar)32

Parallelization of HTML renderer
example (Module 2 handout, Chapter 13)

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #28: Relating j.u.c. libraries
to HJ constructs

For each functional group of j.u.c. libraries included below, indicate one of
the following choices: a) can be used in HJ programs, b) can be substituted
by equivalent HJ constructs in some cases (give examples), c) cannot be
substituted by equivalent HJ constructs in some cases (give examples).

1. Atomic variables

2. Concurrent Collections

3. Locks

4. Executors

5. Synchronizers

33

Name 1: ___________________ Name 2: ___________________

COMP 322, Spring 2013 (V. Sarkar)

Summary of j.u.c. libraries
• Atomics: java.util.concurrent.atomic

— Atomic[Type]
— Atomic[Type]Array
— Atomic[Type]FieldUpdater
— Atomic{Markable,Stampable}

Reference
• Concurrent Collections

— ConcurrentMap
— ConcurrentHashMap
— CopyOnWriteArray{List,Set}

• Locks: java.util.concurrent.locks
— Lock
— Condition
— ReadWriteLock
— AbstractQueuedSynchronizer
— LockSupport
— ReentrantLock
— ReentrantReadWriteLock

34

• Executors
— ExecutorService
— ScheduledExecutorService
— Callable
— Future
— ScheduledFuture
— Delayed
— CompletionService
— ThreadPoolExecutor
— ScheduledThreadPoolExecutor
— AbstractExecutorService
— FutureTask
— ExecutorCompletionService

• Synchronizers
— CountDownLatch
— Semaphore
— Exchanger
— CyclicBarrier

