Apr/03/13

COMP 322: Fundamentals of
Parallel Programming

Lecture 31: More on Actors

Shams Imam (guest lecturer)
Department of Computer Science, Rice University
shams@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 31 3 April 2013 @
Places in HJ
’ HJ Tasks ‘
HJ programmer defines mapping from HJ
tasks to set of places l
,_’ HJ Places ‘
HJ runtime defines mapping from places to one or l

more worker Java threads per place
perp < ’ Java Worker Threads ‘

The option “-places p:w” when executing an HJ] 0S threads ‘
program can be used to specify

p, the number of places

w, the number of worker threads per place

’ Processor Cores ‘
—

2 COMP 322, Spring 2013 (V. Sarkar) @

Places in HJ (Recap)

here = place at which current task is executing

place. MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)"

<place-expr>.id returns the id of the place as an int

async at(P) S

* Creates new task to execute statement S at place P

® async S is equivalent to async at(here) S

* Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child
task is executing, not the place where the parent task is executing

3 COMP 322, Spring 2013 (V. Sarkar)

»

What is an Actor?

« Actors are computational entities
. They encapsulate some local state
- No shared mutable state :)
« Other actors cannot directly change this state
. They are passive and lazy

- Only respond if messages are sent to them
« Usually messages come from other actors
- Only process one message at a time
« Store pending messages in a mailbox
- Mutate local state only while processing a message

- Mutating local state can result in actor responding differently
to subsequent messages

4 COMP 322, Spring 2013 (V. Sarkar)

»

Apr/03/13

Using Actors in HJ

. Create your custom class which extends hj.lang.Actor<Object>
and implement the void process() method

* class MyActor extends Actor<Object> {
protected void process(Object message) {
System.out.printin(“Processing “ + message);

>}

. Instantiate and start your actor
Actor<Object> anActor = new MyActor();
anActor.start()

. Send messages to the actor
anActor.send(aMessage); //aMessage can be any object in general

. Use a special message to terminate an actor
protected void process(Object message) {
if (message.someCondition()) exit();

. __Actor execution implemented as async tasks in HJ

5 COMP 322, Spring 2013 (V. Sarkar)

Anatomy of an Actor

/ mailbox \
»

Local process
\ ocal state one message

at a time

* Message are processed asynchronously (i.e. async tasks)
* Can we obtain data locality benefits from local state?
* Where is the message processed?

6 COMP 322, Spring 2013 (V. Sarkar)

Apr/03/13

Apr/03/13

Adding support for places in HJ actors

. Basic approach: include an optional place parameter in the start()
method

Actor<Object> anActor = new MyActor();
anActor.start(p); // Start actor at place p

. Example:
SievePlaceActor nextActor = new SievePlaceActor(...);
// Start actor at next place, relative to current place
nextActor.start(here.next());

// This ensures locality with respect to local primes stored

7 COMP 322, Spring 2013 (V. Sarkar) @

Actor and Places

* Places act as containers for Actors
* Actors from different places can send each other messages
* Actor always processes the message in a specified place

+ Easier to achieve data locality via local state

Place-0 Place-n

8 COMP 322, Spring 2013 (V. Sarkar) @

The Dining Philosophers Problem

Constraints

0 « Five philosophers either eat or
think

» They must have two forks to eat
(don’t ask why)

» Can only use forks on either side
of their plate

* No talking permitted
Goals
* Progress guarantees
» Deadlock freedom
» Livelock freedom
» Starvation freedom
Bounded wait

* Maximize concurrency when
eating

9 COMP 322, Spring 2013 (V. Sarkar)

Dining philosophers using Actors

. Basic approach: use actors to model state transition diagrams
. Philosophers and Forks treated as actors
« Each has their own state transition diagram

. Based on solution proposed by:
http://www.dalnefre.com/wp/2010/08/dining-philosophers-in-
humus/

. HJ solution available for download at the course wiki

10 COMP 322, Spring 2013 (V. Sarkar)

Apr/03/13

Philosophers — HJ solution

// use Behavior to represent a state in the transition diagram
interface Behavior {
Behavior process(Object theMsg);

class BehavingActor extends Actor<Object> {

protected Behavior currentBehavior;

protected final void process(Object theMsg) {
if (currentBehavior == null) {

throw new IllegalStateException("Current behavior is null!");

b
// update the state in the transition diagram
currentBehavior = currentBehavior.process(theMsg);

r}
class Fork extends BehavingActor {
public Fork (intid) {...}
¥ . .
class Philosopher extends BehavingActor {

public Philosopher(int id, final Fork left, final Fork right) {...}
)

11 COMP 322, Spring 2013 (V. Sarkar)

Forks — state transition diagram

. Basic thinking/eating cycle

acquire

relinquish

12 COMP 322, Spring 2013 (V. Sarkar)

Apr/03/13

Forks — HJ solution

class Fork extends BehavingActor {

private final Behavior IdleBehavior = new Behavior() {
public Behavior process(Object theMsg) {
final Actor<Object> source = ((Message) theMsg).source;
if (theMsg instanceof Acquire) {
// acquire an available fork
source.send(new Allow(Fork.this));
return BusyBehavior;
} else if (theMsg instanceof Relinquish) {
return IdleBehavior;
}else {
throw new UnsupportedOperationException();

by

15. }
16. },
17. }
13 COMP 322, Spring 2013 (V. Sarkar)
Forks — state transition diagram
. Basic thinking/eating cycle
acquire
release
14 COMP 322, Spring 2013 (V. Sarkar)

Apr/03/13

Forks — HJ solution

1 class Fork extends BehavingActor {

. public Behavior process(Object theMsg) {

final Actor<Object> source = ((Message) theMsg).source;

if (theMsg instanceof Acquire) {

source.send(new Deny(Fork.this));

7 // fork is busy, deny request

return BusyBehavior;

. private final Behavior BusyBehavior = new Behavior() {

0. } else if (theMsg instanceof Release) {
1 // fork is now idle
w. return IdleBehavior;
. } else if (theMsg instanceof Relinquish) {
1. // track philosopher relinquishing
1. return BusyBehavior;
6. }else {
. throw new UnsupportedOperationException();
s 33})
15 COMP 322, Spring 2013 (V. Sarkar)

Forks — State Transition Table

Acquire Relinquish | Release
IDLE BUSY EXIT ERROR
BUSY BUSY EXIT IDLE

16

COMP 322, Spring 2013 (V. Sarkar)

Apr/03/13

Philosophers — state transition diagram

« Basic thinking/eating cycle

17 COMP 322, Spring 2013 (V. Sarkar) @

Philosophers — state transition diagram

. Adding forks

Acquire
left

18 COMP 322, Spring 2013 (V. Sarkar) @

Apr/03/13

Philosophers — HJ solution

class Philosopher extends BehavingActor {

3 private final Behavior ThinkingBehavior = new Behavior() {

. public Behavior process(Object theMsg) {

5. if (theMsg instanceof Eat) {

6 // request forks and switch to hungry

;7 final Actor<Object> source = ((Message) theMsg).source;

8 printin(Philosopher.this + " becomes hungry, cause=" + source);
0 left.send(new Acquire(Philosopher.this);

1. right.send(new Acquire(Philosopher.this);
1. return HungryBehavior;
. }else {
B throw new UnsupportedOperationException();
w }rhHY
19 COMP 322, Spring 2013 (V. Sarkar) @

Philosophers — state transition diagram

« Sharing forks

Acquire

Acquire
left

20 COMP 322, Spring 2013 (V. Sarkar) @

Apr/03/13

10

Philosophers — HJ solution

class Philosopher extends BehavingActor {

3 private final Behavior HungryBehavior = new Behavior() {

. public Behavior process(Object theMsg) {

5. final Actor<Object> source = ((Message) theMsg).source;
s if (theMsg instanceof Deny) {

7 // one of the forks unavailable

s return DeniedBehavior;

o } else if (theMsg instanceof Allow) {

1. if (source == left) { // wait on the right fork
1 return RightWaitingBehavior;
. } else { // wait on the left fork
B return LeftWaitingBehavior;
14. }
1s. } else {
6. throw new UnsupportedOperationException();
v Yrh}
21 COMP 322, Spring 2013 (V. Sarkar) @

Philosophers — state transition diagram

« Sharing forks

Acquire

Acquire
left

22 COMP 322, Spring 2013 (V. Sarkar) @

Apr/03/13

11

Philosophers — HJ solution

class Philosopher extends BehavingActor {

private final Behavior DeniedBehavior = new Behavior() {
public Behavior process(Object theMsg) {
final Actor<Object> source = ((Message) theMsg).source;
if (theMsg instanceof Allow) {
// TODO in class
} else if (theMsg instanceof Deny) {
// try eating in future, resume thinking

© *® N o v Ed w ~ il

1. Philosopher.this.send(new Eat(Philosopher.this));
1 return ThinkingBehavior;
. }else {
B throw new UnsupportedOperationException();
w Yrh Y}
23 COMP 322, Spring 2013 (V. Sarkar) @

Philosophers — state transition diagram

« Sharing forks

Acquire

Acquire
left

24 COMP 322, Spring 2013 (V. Sarkar) @

Apr/03/13

12

Philosophers — HJ solution

class Philosopher extends BehavingActor {

private final Behavior RightWaitingBehavior = new Behavior() {
public Behavior process(Object theMsg) {

final Actor<Object> source = ((Message) theMsg).source;

if (theMsg instanceof Allow) {
// both forks available, ready to eat
Philosopher.this.send(new Think(Philosopher.this));
return EatingBehavior;

} else if (theMsg instanceof Deny) {
// release current fork, try eating in future, resume thinking
releaseFork(left);
Philosopher.this.send(new Eat(Philosopher.this));
return ThinkingBehavior;

} else {
throw new UnsupportedOperationException();

Yrh}

25

COMP 322, Spring 2013 (V. Sarkar)

Philosophers — HJ solution

class Philosopher extends BehavingActor {

private final Behavior EatingBehavior = new Behavior() {
public Behavior process(Object theMsg) {
final Actor<Object> source = ((Message) theMsg).source;
if (theMsg instanceof Think) {
// release forks
releaseFork(left);
releaseFork(right);
Philosopher.this.send(new Eat(Philosopher.this));
return ThinkingBehavior;
}else {
throw new UnsupportedOperationException();

Frh}

26

COMP 322, Spring 2013 (V. Sarkar)

Apr/03/13

13

Philosophers — State Transition Table

Eat Think Deny-Fork | Allow-Left Allow-Right

THINKING HUNGRY | ERROR ERROR ERROR ERROR
HUNGRY ERROR | ERROR DENIED RIGHT-WAIT | LEFT-WAIT
DENIED ERROR | ERROR THINKING | THINKING THINKING
LEFT-WAIT ERROR | ERROR THINKING | EATING ERROR
RIGHT-WAIT [ERROR |ERROR THINKING | ERROR EATING
EATING ERROR | THINKING | ERROR ERROR ERROR

27 COMP 322, Spring 2013 (V. Sarkar) §

Deadlock Livelock Starvation Non-
concurrency

Solution 1: Yes No Yes Yes

synchronized

Solution 2: No Yes Yes Yes

tryLock/unLock

Solution 3: No No Yes Yes

isolated

Solution 4: No No Yes No

object-based

isolation

Solution 5: No No No No

semaphores

Solution 6: No Yes Yes No

actors

28

Apr/03/13

14

Worksheet #31: actors and places

Name 1: Name 2:

—{a-0}—{a-1}—{a-2}—{a-3}— ...

Consider a pipeline of actors where an item is produced in each actor and

then transferred between actors using messages. Would a block or cyclic
assignment of actors to places have better data locality?
* Example with 4 places:
* Block Distribution:
Place 0: A-0...A-4;
Place 1: A-5...A-9, ...
* Cyclic Distribution:
Place 0: A-0, A-5, A-10, A-15;
Place-1: A-1, A-6, A-11, A16, ...

29 COMP 322, Spring 2013 (V. Sarkar) @

BACKUP SLIDES START HERE

30 COMP 322, Spring 2013 (V. Sarkar) @

Apr/03/13

15

