
Apr/03/13

1

COMP 322: Fundamentals of
Parallel Programming

Lecture 31: More on Actors

Shams Imam (guest lecturer)
Department of Computer Science, Rice University

shams@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 31 3 April 2013

2 COMP 322, Spring 2013 (V. Sarkar)

Places in HJ

HJ Places

Java Worker Threads

HJ programmer defines mapping from HJ
tasks to set of places

HJ Tasks

HJ runtime defines mapping from places to one or
more worker Java threads per place

The option “-places p:w” when executing an HJ
program can be used to specify
 p, the number of places
 w, the number of worker threads per place

OS threads

Processor Cores

Apr/03/13

2

3 COMP 322, Spring 2013 (V. Sarkar)

Places in HJ (Recap)
here = place at which current task is executing
place.MAX_PLACES = total number of places (runtime constant)

Specified by value of p in runtime option, -places p:w
place.factory.place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”
<place-expr>.id returns the id of the place as an int
async at(P) S
•  Creates new task to execute statement S at place P
•  async S is equivalent to async at(here) S
•  Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child
task is executing, not the place where the parent task is executing

4 COMP 322, Spring 2013 (V. Sarkar)

What is an Actor?
  Actors are computational entities

  They encapsulate some local state

-  No shared mutable state :)

  Other actors cannot directly change this state
  They are passive and lazy

-  Only respond if messages are sent to them
  Usually messages come from other actors

-  Only process one message at a time

  Store pending messages in a mailbox
-  Mutate local state only while processing a message

-  Mutating local state can result in actor responding differently
to subsequent messages

Apr/03/13

3

5 COMP 322, Spring 2013 (V. Sarkar)

Using Actors in HJ
  Create your custom class which extends hj.lang.Actor<Object>

and implement the void process() method

•  class MyActor extends Actor<Object> {
 protected void process(Object message) {
 System.out.println(“Processing “ + message);
 } }

  Instantiate and start your actor
 Actor<Object> anActor = new MyActor();
 anActor.start()

  Send messages to the actor
 anActor.send(aMessage); //aMessage can be any object in general

  Use a special message to terminate an actor
 protected void process(Object message) {
 if (message.someCondition()) exit();
 }

  Actor execution implemented as async tasks in HJ

6 COMP 322, Spring 2013 (V. Sarkar)

Anatomy of an Actor

•  Message are processed asynchronously (i.e. async tasks)
•  Can we obtain data locality benefits from local state?
•  Where is the message processed?

Apr/03/13

4

7 COMP 322, Spring 2013 (V. Sarkar)

Adding support for places in HJ actors
  Basic approach: include an optional place parameter in the start()

method

Actor<Object> anActor = new MyActor();

anActor.start(p); // Start actor at place p

  Example:

SievePlaceActor nextActor = new SievePlaceActor(...);

// Start actor at next place, relative to current place

nextActor.start(here.next());

// This ensures locality with respect to local primes stored

8 COMP 322, Spring 2013 (V. Sarkar)

Actor and Places
•  Places act as containers for Actors
•  Actors from different places can send each other messages
•  Actor always processes the message in a specified place

•  Easier to achieve data locality via local state

Place-0 Place-n

Apr/03/13

5

9 COMP 322, Spring 2013 (V. Sarkar)

The Dining Philosophers Problem
Constraints
•  Five philosophers either eat or
think
•  They must have two forks to eat
(don’t ask why)
•  Can only use forks on either side
of their plate
•  No talking permitted
Goals
•  Progress guarantees

•  Deadlock freedom
•  Livelock freedom
•  Starvation freedom
•  Bounded wait

•  Maximize concurrency when
eating

0

1

2 3

4

0

1
2

3

4

10 COMP 322, Spring 2013 (V. Sarkar)

Dining philosophers using Actors
  Basic approach: use actors to model state transition diagrams

  Philosophers and Forks treated as actors

  Each has their own state transition diagram

  Based on solution proposed by:
http://www.dalnefre.com/wp/2010/08/dining-philosophers-in-
humus/

  HJ solution available for download at the course wiki

Apr/03/13

6

11 COMP 322, Spring 2013 (V. Sarkar)

Philosophers – HJ solution
// use Behavior to represent a state in the transition diagram
interface Behavior {
 Behavior process(Object theMsg);
}
class BehavingActor extends Actor<Object> {
 protected Behavior currentBehavior;
 protected final void process(Object theMsg) {
 if (currentBehavior == null) {
 throw new IllegalStateException("Current behavior is null!");
 }
 // update the state in the transition diagram
 currentBehavior = currentBehavior.process(theMsg);
} }
class Fork extends BehavingActor {
 public Fork (int id) {...}
 ...
}
class Philosopher extends BehavingActor {
 public Philosopher(int id, final Fork left, final Fork right) {...}
 ...
}

12 COMP 322, Spring 2013 (V. Sarkar)

Forks – state transition diagram
  Basic thinking/eating cycle

IDLE BUSY

acquire

relinquish

Apr/03/13

7

13 COMP 322, Spring 2013 (V. Sarkar)

Forks – HJ solution
1.  class Fork extends BehavingActor {
2.  ...
3.  private final Behavior IdleBehavior = new Behavior() {
4.  public Behavior process(Object theMsg) {
5.  final Actor<Object> source = ((Message) theMsg).source;
6.  if (theMsg instanceof Acquire) {
7.  // acquire an available fork
8.  source.send(new Allow(Fork.this));
9.  return BusyBehavior;
10.  } else if (theMsg instanceof Relinquish) {
11.  return IdleBehavior;
12.  } else {
13.  throw new UnsupportedOperationException();
14.  }
15.  }
16.  };
17.  }

14 COMP 322, Spring 2013 (V. Sarkar)

Forks – state transition diagram
  Basic thinking/eating cycle

IDLE BUSY

acquire

release

Apr/03/13

8

15 COMP 322, Spring 2013 (V. Sarkar)

Forks – HJ solution
1.  class Fork extends BehavingActor {
2.  …
3.  private final Behavior BusyBehavior = new Behavior() {
4.  public Behavior process(Object theMsg) {
5.  final Actor<Object> source = ((Message) theMsg).source;
6.  if (theMsg instanceof Acquire) {
7.  // fork is busy, deny request
8.  source.send(new Deny(Fork.this));
9.  return BusyBehavior;
10.  } else if (theMsg instanceof Release) {
11.  // fork is now idle
12.  return IdleBehavior;
13.  } else if (theMsg instanceof Relinquish) {
14.  // track philosopher relinquishing
15.  return BusyBehavior;
16.  } else {
17.  throw new UnsupportedOperationException();
18.  } } }; }

16 COMP 322, Spring 2013 (V. Sarkar)

Forks – State Transition Table

Acquire Relinquish Release
IDLE BUSY EXIT ERROR
BUSY BUSY EXIT IDLE

Apr/03/13

9

17 COMP 322, Spring 2013 (V. Sarkar)

Philosophers – state transition diagram
  Basic thinking/eating cycle

THINKING EATING

eat

think

18 COMP 322, Spring 2013 (V. Sarkar)

Philosophers – state transition diagram
  Adding forks

THINKING

EATING

HUNGRY eat

think

LEFT-TAKEN RIGHT-TAKEN

Acquire
left

Acquire
right

Acquire
left

Acquire
right

Apr/03/13

10

19 COMP 322, Spring 2013 (V. Sarkar)

Philosophers – HJ solution
1.  class Philosopher extends BehavingActor {
2.  …
3.  private final Behavior ThinkingBehavior = new Behavior() {
4.  public Behavior process(Object theMsg) {
5.  if (theMsg instanceof Eat) {
6.  // request forks and switch to hungry
7.  final Actor<Object> source = ((Message) theMsg).source;
8.  println(Philosopher.this + " becomes hungry, cause=" + source);
9.  left.send(new Acquire(Philosopher.this);
10.  right.send(new Acquire(Philosopher.this);
11.  return HungryBehavior;
12.  } else {
13.  throw new UnsupportedOperationException();
14.  } } }; }

20 COMP 322, Spring 2013 (V. Sarkar)

Philosophers – state transition diagram
  Sharing forks

THINKING

EATING

HUNGRY eat

think

LEFT-TAKEN RIGHT-TAKEN

Acquire
left

Acquire
right

Acquire
left

Acquire
right

DENIED

Apr/03/13

11

21 COMP 322, Spring 2013 (V. Sarkar)

Philosophers – HJ solution
1.  class Philosopher extends BehavingActor {
2.  …
3.  private final Behavior HungryBehavior = new Behavior() {
4.  public Behavior process(Object theMsg) {
5.  final Actor<Object> source = ((Message) theMsg).source;
6.  if (theMsg instanceof Deny) {
7.  // one of the forks unavailable
8.  return DeniedBehavior;
9.  } else if (theMsg instanceof Allow) {
10.  if (source == left) { // wait on the right fork
11.  return RightWaitingBehavior;
12.  } else { // wait on the left fork
13.  return LeftWaitingBehavior;
14.  }
15.  } else {
16.  throw new UnsupportedOperationException();
17.  } } }; }

22 COMP 322, Spring 2013 (V. Sarkar)

Philosophers – state transition diagram
  Sharing forks

THINKING

EATING

HUNGRY eat

think

LEFT-TAKEN RIGHT-TAKEN

Acquire
left

Acquire
right

Acquire
left

Acquire
right

DENIED

Apr/03/13

12

23 COMP 322, Spring 2013 (V. Sarkar)

Philosophers – HJ solution
1.  class Philosopher extends BehavingActor {
2.  …
3.  private final Behavior DeniedBehavior = new Behavior() {
4.  public Behavior process(Object theMsg) {
5.  final Actor<Object> source = ((Message) theMsg).source;
6.  if (theMsg instanceof Allow) {
7.  // TODO in class
8.  } else if (theMsg instanceof Deny) {
9.  // try eating in future, resume thinking
10.  Philosopher.this.send(new Eat(Philosopher.this));
11.  return ThinkingBehavior;
12.  } else {
13.  throw new UnsupportedOperationException();
14.  } } }; }

24 COMP 322, Spring 2013 (V. Sarkar)

Philosophers – state transition diagram
  Sharing forks

THINKING

EATING

HUNGRY eat

think

LEFT-TAKEN RIGHT-TAKEN

Acquire
left

Acquire
right

Acquire
left

Acquire
right

DENIED

Apr/03/13

13

25 COMP 322, Spring 2013 (V. Sarkar)

Philosophers – HJ solution
1.  class Philosopher extends BehavingActor {
2.  …
3.  private final Behavior RightWaitingBehavior = new Behavior() {
4.  public Behavior process(Object theMsg) {
5.  final Actor<Object> source = ((Message) theMsg).source;
6.  if (theMsg instanceof Allow) {
7.  // both forks available, ready to eat
8.  Philosopher.this.send(new Think(Philosopher.this));
9.  return EatingBehavior;
10.  } else if (theMsg instanceof Deny) {
11.  // release current fork, try eating in future, resume thinking
12.  releaseFork(left);
13.  Philosopher.this.send(new Eat(Philosopher.this));
14.  return ThinkingBehavior;
15.  } else {
16.  throw new UnsupportedOperationException();
17.  } } }; }

26 COMP 322, Spring 2013 (V. Sarkar)

Philosophers – HJ solution
1.  class Philosopher extends BehavingActor {
2.  …
3.  private final Behavior EatingBehavior = new Behavior() {
4.  public Behavior process(Object theMsg) {
5.  final Actor<Object> source = ((Message) theMsg).source;
6.  if (theMsg instanceof Think) {
7.  // release forks
8.  releaseFork(left);
9.  releaseFork(right);
10.  Philosopher.this.send(new Eat(Philosopher.this));
11.  return ThinkingBehavior;
12.  } else {
13.  throw new UnsupportedOperationException();
14.  } } }; }

Apr/03/13

14

27 COMP 322, Spring 2013 (V. Sarkar)

Philosophers – State Transition Table

Eat Think Deny-Fork Allow-Left Allow-Right
THINKING HUNGRY ERROR ERROR ERROR ERROR
HUNGRY ERROR ERROR DENIED RIGHT-WAIT LEFT-WAIT
DENIED ERROR ERROR THINKING THINKING THINKING
LEFT-WAIT ERROR ERROR THINKING EATING ERROR
RIGHT-WAIT ERROR ERROR THINKING ERROR EATING
EATING ERROR THINKING ERROR ERROR ERROR

28

Deadlock Livelock Starvation Non-
concurrency

Solution 1:
synchronized

Yes No Yes Yes

Solution 2:
tryLock/unLock

No Yes Yes Yes

Solution 3:
isolated

No No Yes Yes

Solution 4:
object-based
isolation

No No Yes No

Solution 5:
semaphores

No No No No

Solution 6:
actors

No Yes Yes No

Apr/03/13

15

29 COMP 322, Spring 2013 (V. Sarkar)

Worksheet #31: actors and places

Consider a pipeline of actors where an item is produced in each actor and
then transferred between actors using messages. Would a block or cyclic
assignment of actors to places have better data locality?
• Example with 4 places:

• Block Distribution:
 Place 0: A-0…A-4;
 Place 1: A-5…A-9, …

• Cyclic Distribution:
 Place 0: A-0, A-5, A-10, A-15;
 Place-1: A-1, A-6, A-11, A16, …

Name 1: ___________________ Name 2: ___________________

A-0 A-1 A-2 A-3 A-19 ...

30 COMP 322, Spring 2013 (V. Sarkar)

BACKUP SLIDES START HERE

