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HJ isolated statement (Lectures 19, 20)
isolated <body>
• Isolated statement identifies a critical section

• Two tasks executing isolated statements must perform them in 
mutual exclusion
èIsolation guarantee applies to (isolated, isolated) pairs of statement 

instances, not to (isolated, non-isolated) pairs of statement instances

• Isolated statements may be nested
— An inner isolated statement is redundant

• Parallel constructs should be avoided inside isolated statements
—Isolated statements must not contain any other parallel statement that 

performs a blocking operation: finish, future get, next, async await

—Non-blocking async operations are permitted, but isolation guarantee 
only applies to creation of async, not to its execution

• Isolated statements can never cause a deadlock
— Other techniques used to enforce mutual exclusion (e.g., locks) can lead 

to a deadlock, if used incorrectly
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Parallel Spanning Tree Algorithm using 
isolated statement

1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   V parent; // output value of parent in spanning tree

4.   boolean tryLabeling(V n) {
5.     isolated if (parent == null) parent=n;

6.     return parent == n; // return true for success
7.   } // tryLabeling
8.   void compute() {

9.     for (int i=0; i<neighbors.length; i++) { 
10.      V child = neighbors[i];  

11.      if (child.tryLabeling(this))
12.          async child.compute(); //escaping async
13.     } 

14.  } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .
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Figure source: 
http://en.wikipedia.org/wiki/Spanning_tree

Example graph
(root=1, spanning 
tree edge shown 
as arrow from 
child to parent)
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Serialized Computation Graph for 
Isolated Statements

• Model each instance of an isolated statement as a distinct step 
(node) in the CG. 

• Need to reason about the order in which interfering isolated 
statements are executed
—Complicated because the order of isolated statements may vary from 

execution to execution

• Introduce Serialized Computation Graph (SCG) that includes a 
specific ordering of all interfering isolated statements. 
—SCG consists of a CG with additional serialization edges.
—Each time an isolated step, S′, is executed, we add a serialization edge 

from S to S′ for each prior “interfering” isolated step, S
– Two isolated statements always interfere with each other
– Interference of “object-based isolated” statements depends on 

intersection of object sets
– Serialization edge is not needed if S and S’ are already ordered in CG

—An SCG represents a set of executions in which all interfering isolated 
statements execute in the same order.
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Example of Serialized Computation Graph 
with Serialization Edges for v10-v16-v11 order

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10:  isolated { x ++; y = 10; } 
v11:  isolated { x++;  y = 11; } 
v16:  isolated { x++;  y = 16; } 
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 Data race definition can be applied to Serialized 
Computation Graphs (SCGs) just like regular CGs	


—     Need to consider all possible orderings of interfering isolated 
statements to establish data race freedom
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Object-based isolation in HJ 

isolated(obj1, obj2, ...) <body>

• In this case, programmer specifies list of objects for 
which isolation is required

• Mutual exclusion is only guaranteed for instances of 
isolated statements that have a non-empty intersection 
in their object lists 
—Standard isolated is equivalent to “isolated(*)” by 

default i.e., isolation across all objects
• Implementation can choose to distinguish between 

read/write accesses for further parallelism
—Current HJ implementation supports object-based 

isolation, but does not exploit read/write distinction
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1. class V  {
2.   V [] neighbors; // adjacency list for input graph
3.   V parent; // output value of parent in spanning tree

4.   boolean tryLabeling(V n) {
5.     isolated(this) if (parent == null) parent=n;

6.     return parent == n; // return true for success
7.   } // tryLabeling
8.   void compute() {

9.     for (int i=0; i<neighbors.length; i++) { 
10.      V child = neighbors[i];  

11.      if (child.tryLabeling(this))
12.          async child.compute(); //escaping async
13.     } 

14.  } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

Parallel Spanning Tree Algorithm using 
Object-based isolation
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The Actor Model (Lectures 21, 22)

• An actor may: 
—process messages
—read/write local state
—create a new actor
—start a new actor 
—send messages to 

other actors
—terminate

• An actor processes 
messages 
sequentially
—guaranteed mutual 

exclusion on accesses 
to local state

Thread

State

Mailbox
create

8

send

Thread

State

Mailbox

State

Mailbox

Thread

State

Mailbox
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Actor Life Cycle

Actor states

l New: Actor has been created

l e.g., email account has been created
l Started: Actor can receive and process messages

l e.g., email account has been activated
l Terminated: Actor will no longer processes messages 

l e.g., termination of email account after graduation



COMP 322, Spring 2013 (V. Sarkar)10

Using Actors in HJ
l Create your custom class which extends hj.lang.Actor<Object> ,and 

implement the void process() method
class MyActor extends Actor<Object> {
  protected void process(Object message) {
    System.out.println(“Processing “ + message);
} }

l Instantiate and start your actor
!Actor<Object> anActor = new MyActor(); anActor.start()

l Send messages to the actor
  anActor.send(aMessage); //aMessage can be any object in general

l Use a special message to terminate an actor
  protected void process(Object message) {
    if (message.someCondition()) exit(); 
  }

l Actor execution implemented as async tasks in HJ
l Can use finish to await completion of an actor!
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ThreadRing (Coordination) Example

3 1

0

2

1. finish {
2.   int numThreads = 4;
3.   int numberOfHops = 10;
4.   ThreadRingActor[] ring = 

    new ThreadRingActor[numThreads];
5.   for(int i=numThreads-1;i>=0; i--) {
6.     ring[i] = new ThreadRingActor(i);
7.     ring[i].start();
8.     if (i < numThreads - 1) {
9.       ring[i].nextActor(ring[i + 1]);
10.   } }
11.   ring[numThreads-1].nextActor(ring[0]);
12.   ring[0].send(numberOfHops);
13. } // finish

14. class ThreadRingActor 
15.     extends Actor<Object> {
16.   private Actor<Object> nextActor;
17.   private final int id;
18.   ...  
19.   public void nextActor(

    Actor<Object> nextActor) {...}
20.   void process(Object theMsg) {
21.     if (theMsg instanceof Integer) {
22.       Integer n = (Integer) theMsg;
23.       if (n > 0) {
24.         println("Thread-" + id + 
25.           " active, remaining = " + n);
26.         nextActor.send(n - 1);
27.       } else {
28.         println("Exiting Thread-"+ id);
29.         nextActor.send(-1);
30.         exit();
31.       }
32.     } else { 
33.     /* ERROR - handle appropriately */ 
34. } } }
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Summary of Mutual Exclusion approaches in HJ

l Isolated --- analogous to critical sections
l Object-based isolation, isolated(a, b, ...)

l Single object in list --- like monitor operations on object
l Multiple objects in list --- deadlock-free mutual exclusion 

on sets of objects
l Java atomic variables --- optimized implementation of 

object-based isolation
l Java concurrent collections --- optimized implementation of 

monitors
l Actors --- different paradigm from task parallelism (mutual 

exclusion by default)
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Linearizability of Concurrent Objects 
(Lectures 22, 23)

Concurrent object

• A concurrent object is an object that can correctly handle methods 
invoked in parallel bylin different tasks or threads

—Examples: concurrent queue, AtomicInteger

Linearizability
• Assume that each method call takes effect “instantaneously” at 

some distinct point in time between its invocation and return.

• An execution is linearizable if we can choose instantaneous points 
that are consistent with a sequential execution in which methods 
are executed at those points

• An object is linearizable if all its possible executions are 
linearizable

13
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Example 1 

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

linearizable
q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Example 2

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt 
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Safety vs. Liveness
(Lecture 24)

• In a concurrent setting, we need to specify both the safety and 
the liveness properties of an object

• Need a way to define 
—Safety: when an implementation is correct
—Liveness: the conditions under which it guarantees progress

• Data race freedom is a desirable safety property for most 
parallel programs

• Linearizability is a desirable safety property for most 
concurrent objects

16
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Liveness Guarantees
• Liveness = a program’s ability to make progress in a 

timely manner

• Different levels of liveness guarantees (from weaker to 
stronger)
—Deadlock freedom
—Livelock freedom
—Starvation freedom
—Bounded wait

17
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Two-way Parallel ArraySum using Java 
threads (Lecture 24)

18
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Objects and Locks in Java ---
synchronized statements and methods (Lecture 25)

• Every Java object has an associated lock acquired via:
— synchronized statements

–   synchronized( foo ) { // acquire foo’s lock
   // execute code while holding foo’s lock
} // release foo’s lock

— synchronized methods
–   public synchronized void op1() { // acquire ‘this‘ lock

   // execute method while holding ‘this’ lock
} // release ‘this’ lock

• Java language does not enforce any relationship between object used for 
locking and objects accessed in isolated code
—If same object is used for locking and data access, then the object 

behaves like a monitor
• Locking and unlocking are automatic

—Locks are released when a synchronized block exits
• By normal means: end of block reached, return, break
• When an exception is thrown and not caught

19
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Implementation of Java synchronized 
statements/methods

• Every object has an associated lock

• “synchronized” is translated to matching monitorenter and 
monitorexit bytecode instructions for the Java virtual machine
—monitorenter requests “ownership” of the object’s lock
—monitorexit releases “ownership” of the object’s lock

• If a thread performing monitorenter does not own the lock 
(because another thread already owns it), it is placed in an 
unordered “entry set” for the object’s lock

20
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java.util.concurrent.locks.Lock interface
(Lecture 26)

  interface Lock {

  void lock();

  void lockInterruptibly() throws InterruptedException;

  boolean tryLock(); // return false if lock is not obtained

  boolean tryLock(long timeout, TimeUnit unit)

                           throws InterruptedException;

  void unlock();

  Condition newCondition(); 

     // can associate multiple condition vars with lock

}

• java.util.concurrent.locks.Lock interface is implemented by 
java.util.concurrent.locks.ReentrantLock class

21
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java.util.concurrent.locks.ReadWriteLock 
interface

  interface ReadWriteLock {

  Lock readLock();

  Lock writeLock();

  }

• Even though the interface appears to just define a pair of locks, the 
semantics of the pair of locks is coupled as follows
—Case 1: a thread has successfully acquired writeLock().lock()

– No other thread can acquire readLock() or writeLock()
—Case 2: no thread has acquired writeLock().lock()

– Multiple threads can acquire readLock()
– No other thread can acquire writeLock()

• java.util.concurrent.locks.ReadWriteLock interface is implemented by 
java.util.concurrent.locks.ReadWriteReentrantLock class

22
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Java Executors and Synchronizers
(Lecture 28)

• Atomic variables
—The key to writing lock-free algorithms

• Concurrent Collections: 
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Synchronizers: Semaphore, Latch, Barrier, Exchanger
—Ready made tools for thread coordination

23
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Summary: Relating j.u.c. libraries to HJ 
constructs

• Executors
— Executor
— ExecutorService
— ScheduledExecutorService
— Callable
— Future
— ScheduledFuture
— Delayed
— CompletionService
— ThreadPoolExecutor
— ScheduledThreadPoolExecutor
— AbstractExecutorService
— Executors
— FutureTask
— ExecutorCompletionService

• Queues
— BlockingQueue
— ConcurrentLinkedQueue
— LinkedBlockingQueue
— ArrayBlockingQueue
— SynchronousQueue
— PriorityBlockingQueue
— DelayQueue

• Atomics: java.util.concurrent.atomic
— Atomic[Type]
— Atomic[Type]Array
— Atomic[Type]FieldUpdater
— Atomic{Markable,Stampable}Reference

• Concurrent Collections
— ConcurrentMap
— ConcurrentHashMap
— CopyOnWriteArray{List,Set}

• Locks: java.util.concurrent.locks
— Lock
— Condition
— ReadWriteLock
— AbstractQueuedSynchronizer
— LockSupport
— ReentrantLock
— ReentrantReadWriteLock

• Synchronizers
— CountDownLatch
— Semaphore
— Exchanger
— CyclicBarrier

Can be used as is in HJ programs

Many uses of j.u.c.locks & 
synchronized can be 

replaced by HJ isolated

Many uses can be replaced 
by finish, phasers, and 
data-driven futures

Many uses can be 
replaced by async, 

finish, futures, forall

Do not use 
BlockingQueue in HJ 

programs, and take care  
to avoid infinite loops on 
retrieval operations on 
non-blocking queues

24

Can be used as is in HJ programs
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The Dining Philosophers Problem
(Lecture 29)

Constraints
• Five philosophers either eat 

or think
• They must have two forks to 

eat (don’t ask why)
• Can only use forks on either 

side of their plate
• No talking permitted
Goals
• Progress guarantees

• Deadlock freedom
• Livelock freedom
• Starvation freedom
• Bounded wait

• Maximize concurrency when 
eating

0

1

2

0

3

11

4

0

1
2

3

4
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Deadlock Livelock Starvation Non-
concurrency

Solution 1:
synchronized

Yes No Yes Yes

Solution 2: 
tryLock/
unLock

No Yes Yes Yes

Solution 3:
isolated

No No Yes Yes

Solution 4:
object-based 
isolation

No No Yes No

Solution 5:
semaphores

No No No No

Solution 6:
actors

No Yes Yes No
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Places in HJ (Lecture 30)
here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) =  place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id returns the id of the place as an int

async at(P) S
• Creates new task to execute statement S at place P

• async S is equivalent to async at(here) S

• Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child task is 
executing, not the place where the parent task is executing

27
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Example of –places 4:2 option on an 8-core 
node (4 places w/ 2 workers per place)

Place 1

Regs

L1 L1 

L2 unified cache

Core A

Regs

L1 

Core B

L1 

Regs

L1 L1 

L2 unified cache

Core C

Regs

L1 

Core D

L1 

Regs

L1 L1 

L2 unified cache

Core E

Regs

L1 

Core F

L1 

Regs

L1 L1 

L2 unified cache

Core G

Regs

L1 

Core H

L1 

Place 0 Place 1

Place 2 Place 3

// Main program starts at place 0
async at(place.factory.place(0)) S1; 
async at(place.factory.place(0)) S2;

async at(place.factory.place(1)) S3; 
async at(place.factory.place(1)) S4;
async at(place.factory.place(1)) S5;

async at(place.factory.place(2)) S6;
async at(place.factory.place(2)) S7;
async at(place.factory.place(2)) S8;

async at(place.factory.place(3)) S9;
async at(place.factory.place(3)) S10;

28
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Example HJ program with places

29



COMP 322, Spring 2013 (V. Sarkar)7 COMP 322, Spring 2013 (V. Sarkar)

Adding support for places in HJ actors
(Lecture 31)

l Basic approach: include an optional place parameter in the 
start() method

Actor<Object> anActor = new MyActor();

anActor.start(p); // Start actor at place p
l Example:

SievePlaceActor nextActor = new SievePlaceActor(...);

// Start actor at next place, relative to current place

nextActor.start(here.next());

// This ensures locality with respect to local primes stored
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Actor and Places
• Places act as containers for Actors
• Actors from different places can send each other messages
• Actor always processes the message in a specified place

• Easier to achieve data locality via local state

Place-0 Place-n
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Introduction to MPI (Lectures 32, 33, 34)

1.import mpi.*;
2.class Hello {
3.    static public void main(String[] args) {
4.       // Init() be called before other MPI calls
5.       MPI.Init(args); /
6.       int npes = MPI.COMM_WORLD.Size() 
7.       int myrank = MPI.COMM_WORLD.Rank() ;
8.       System.out.println(”My process number is ” + myrank);
9.       MPI.Finalize(); // Shutdown and clean-up
10.    }
11.}

main() is enclosed in an 
implicit “forall” --- each 
process runs a separate 
instance of main() with 
“index variable” = myrank

32
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Example with Send and Recv
1.import mpi.*;

3.class myProg {
4.  public static void main( String[] args ) {
5.    int tag0 = 0;
6.    MPI.Init( args );        // Start MPI computation
7.    if ( MPI.COMM_WORLD.rank() == 0 ) { // rank 0 = sender
8.      int loop[] = new int[1]; loop[0] = 3;
9.      MPI.COMM_WORLD.Send( "Hello World!", 0, 12, MPI.CHAR, 1, tag0 );
10.      MPI.COMM_WORLD.Send( loop, 0, 1, MPI.INT, 1, tag0 );
11.    } else {                            // rank 1 = receiver
12.      int loop[] = new int[1]; char msg[] = new char[12];
13.      MPI.COMM_WORLD.Recv( msg, 0, 12, MPI.CHAR, 0, tag0 );
14.      MPI.COMM_WORLD.Recv( loop, 0, 1, MPI.INT, 0, tag0 );
15.      for ( int i = 0; i < loop[0]; i++ ) System.out.println( msg );
16.    }
17.    MPI.Finalize( );        // Finish MPI computation
18.  }
19.}

Send() and Recv() calls are blocking operations by default

33
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Approach #1 to Deadlock Avoidance ---
Reorder Send and Recv calls

We can break the circular wait to avoid deadlocks as follows:

int a[], b[];
...
if (MPI.COMM_WORLD.rank() == 0) {
    MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
    MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
}
else {
    Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 
1);
    Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 
2);
}
...



COMP 322, Spring 2013 (V. Sarkar)35

Using Sendrecv for Deadlock Avoidance 
in Scenario #2

Consider the following piece of code, in which process i sends a message to 
process i + 1 (modulo the number of processes) and receives a message from 

process i - 1 (modulo the number of processes)

int a[], b[];
. . .
int npes = MPI.COMM_WORLD.size();
int myrank = MPI.COMM_WORLD.rank()
MPI.COMM_WORLD.Sendrecv(a, 0, 10, MPI.INT, (myrank+1)%npes, 1,
                    b, 0, 10, MPI.INT, (myrank-1+npes)%npes, 
1);

...

A combined Sendrecv() call avoids deadlock in this case
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Simple Irecv() example
• The simplest way of waiting for completion of a single non-

blocking operation is to use the instance method Wait() in the 
Request class, e.g:
// Post a receive operation
Request request = Irecv(intBuf, 0, n, MPI.INT, 
                        MPI.ANY_SOURCE,  0) ;

// Do some work while the receive is in progress
…

// Finished that work, now make sure the message has 
arrived

Status status = request.Wait() ;

// Do something with data received in intBuf
…

• The Wait() operation is declared to return a Status object.  In 
the case of a non-blocking receive operation, this object has 
the same interpretation as the Status object returned by a 
blocking Recv() operation.

36
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Collective Communications
• Each collective operation is defined over a communicator 

(most often, MPI.COMM_WORLD)
— Each collective operation contains an implicit barrier.  The operation 

completes and execution continues when all processes in the 
communicator perform the same collective operation.

—A mismatch in operations results in deadlock e.g.,
Process 0: .... MPI.Bcast(...) ....
Process 1: .... MPI.Bcast(...) ....
Process 2: .... MPI.Gather(...) ....

• We can model the synchronization performed by MPI operations as 
phasers to understand their semantics

— Assume that all processes are registered on multiple phasers, one for 
each kind of collective operation e.g., ph1 for Bcast, ph2 for Gather

—The above example can be rewritten as follows, where doNext() 
performs a “next” operation on one phaser only
Process 0: .... ph1.doNext(); ....
Process 1: .... ph1.doNext(); ....
Process 2: .... ph2.doNext(); ....

37
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Examples of Collective Operations
void Barrier()

– Blocks the caller until all processes in the group have called it.

void Gather(Object sendbuf, int sendoffset, int sendcount, 
Datatype sendtype, Object recvbuf, int recvoffset, 
int recvcount, Datatype recvtype, int root)

– Each process sends the contents of its send buffer to the root process.

void Scatter(Object sendbuf, int sendoffset, int sendcount, 
Datatype sendtype, Object recvbuf, int recvoffset, 
int recvcount, Datatype recvtype, int root)      

– Inverse of the operation Gather.

void Reduce(Object sendbuf, int sendoffset, Object recvbuf, 
int recvoffset, int count, Datatype datatype, Op op, 
int root)

– Combine elements in send buffer of each process using the reduce 
operation, and return the combined value in the receive buffer of the 
root process.

38
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Operations on Sets of Key-Value Pairs
(Lecture 35)

• Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, 
vi) consists of a key, ki, and a value, vi. 
—Assume that the key and value objects are immutable, 

and that equality comparison is well defined on all key 
objects.

• Map function f generates sets of intermediate key-value 
pairs,  f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}.  The kj′ keys can 
be different from ki key in the input of the map function.
—Assume that a flatten operation is performed as a 

post-pass after the map operations, so as to avoid 
dealing with a set of sets.

• Reduce operation groups together intermediate key-
value pairs, {(k′, vj′)} with the same k’, and generates a 
reduced key-value pair, (k′,v′′), for each such k’, using 
reduce function g

39
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MapReduce: The Map Step

vk

k' v'

k' v'
map

vk

vk

…
k' v'

map

Input set of 
key-value pairs

Flattened intermediate
set of key-value pairs

…

k' v'map

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt
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MapReduce: The Reduce Step

k' v'

…

k' v'

k' v'

k' v'

Intermediate
key-value pairs

group

reduce

reduce
k' v''

v''

v''

…

k' v'

…

k' v'

k' v' v'

v' v'

Key-value groups
Output 
key-value pairs

k'

k'

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt
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Algorithms for MapReduce
• Sorting

• Searching

• Indexing

• Classification

• TF-IDF

• Breadth-First Search / SSSP

• PageRank

• Clustering

42
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Inverted Index: Data flow

This page contains 
so much text

My page contains 
text too

Foo

Bar

contains: Bar
My: Bar
page : Bar
text: Bar
too: Bar

contains: Foo
much: Foo
page : Foo
so : Foo
text: Foo
This : Foo

contains: Foo, Bar
much: Foo
My: Bar
page : Foo, Bar
so : Foo
text: Foo, Bar
This : Foo
too: Bar

Reduced output

Foo map output

Bar map output
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UPC Execution Model (Lecture 36)
• Multiple threads working independently in a SPMD fashion

—MYTHREAD specifies thread index (0..THREADS-1)
– Like MPI processes and ranks

—# threads specified at compile-time or program launch

• Partitioned Global Address Space (different from MPI)

• Threads synchronize as necessary using using
—synchronization primitives
—shared variables
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Worksheet #36: UPC data distributions

In the following example from slide 23, assume that each UPC array is 
distributed by default across threads with a cyclic distribution.  In the space 
below, identify an iteration of the upc_forall construct for which all array 
accesses are local, and an iteration for which all array accesses are non-local 
(remote).  Explain your answer in each case.

shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; (i*THREADS)/100)
    a[i] = b[i] * c[i];

45

Solution:
• Iteration 0 has affinity with thread 0, and accesses a[0], b[0], 
c[0], all of which are located locally at thread 0
• Iteration 1 has affinity with thread 0, and accesses a[1], b[1], 
c[1], all of which are located remotely at thread 1
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Comparison of Multicore Programming Models 
along Selected Dimensions
Dynamic 

Parallelism
Locality Control Mutual Exclusion Collective & Point-

to-point 
Synchronization

Data Parallelism

Cilk Spawn, sync None Locks None None

Java 
Concurrency

Executors, 
Task Queues

None Locks, monitors, 
atomic classes

Synchronizers Concurrent collections

Intel C++ 
Threading 
Building Blocks

Generic 
algorithms, 

tasks

None Locks, atomic 
classes

None Concurrent containers

.Net Parallel 
Extensions

Generic 
algorithms, 

tasks

None Locks, monitors Futures PLINQ

OpenMP SPMD (v2.5), 
Tasks (v3.0)

None Locks, critical, 
atomic

Barriers None

CUDA None until 
recently (v5) 

Device, grid, block, 
threads

None Barriers SPMD

Habanero-Java
(builds on Java 
Concurrency)

Async, finish Places Isolated blocks, 
Java atomic 

classes

Phasers, futures, 
data-driven tasks

Parallel array 
operations, Java 

concurrent collections
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Announcements (Recap)
• Graded midterm exams can be picked up from Sherry Nassar in 

Duncan Hall 3139

• Homework 6 is officially due today, but everyone can get an 
automatic penalty-free extension till April 26th
—No need to send a request for this extension

• Final exam will be given today to be taken in any two-hour 
duration returned to Sherry Nassar by April 26th (as was done 
with midterm exams)
— Final exam will cover material from Lectures 19 - 36

• Today is the last lecture!
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“Education is 
what survives 

when what has 
been learned 

has been 
forgotten”

B.F. Skinner

Have a great 
summer!!


