
COMP 322: Fundamentals of
Parallel Programming

Lecture 38: Course Review

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 38 19 April 2013

COMP 322, Spring 2013 (V. Sarkar)

HJ isolated statement (Lectures 19, 20)
isolated <body>
• Isolated statement identifies a critical section

• Two tasks executing isolated statements must perform them in
mutual exclusion
èIsolation guarantee applies to (isolated, isolated) pairs of statement

instances, not to (isolated, non-isolated) pairs of statement instances

• Isolated statements may be nested
— An inner isolated statement is redundant

• Parallel constructs should be avoided inside isolated statements
—Isolated statements must not contain any other parallel statement that

performs a blocking operation: finish, future get, next, async await

—Non-blocking async operations are permitted, but isolation guarantee
only applies to creation of async, not to its execution

• Isolated statements can never cause a deadlock
— Other techniques used to enforce mutual exclusion (e.g., locks) can lead

to a deadlock, if used incorrectly

2

COMP 322, Spring 2013 (V. Sarkar)

Parallel Spanning Tree Algorithm using
isolated statement

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree

4. boolean tryLabeling(V n) {
5. isolated if (parent == null) parent=n;

6. return parent == n; // return true for success
7. } // tryLabeling
8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {
10. V child = neighbors[i];

11. if (child.tryLabeling(this))
12. async child.compute(); //escaping async
13. }

14. } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

3

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure source:
http://en.wikipedia.org/wiki/Spanning_tree

Example graph
(root=1, spanning
tree edge shown
as arrow from
child to parent)

COMP 322, Spring 2013 (V. Sarkar)

Serialized Computation Graph for
Isolated Statements

• Model each instance of an isolated statement as a distinct step
(node) in the CG.

• Need to reason about the order in which interfering isolated
statements are executed
—Complicated because the order of isolated statements may vary from

execution to execution

• Introduce Serialized Computation Graph (SCG) that includes a
specific ordering of all interfering isolated statements.
—SCG consists of a CG with additional serialization edges.
—Each time an isolated step, S′, is executed, we add a serialization edge

from S to S′ for each prior “interfering” isolated step, S
– Two isolated statements always interfere with each other
– Interference of “object-based isolated” statements depends on

intersection of object sets
– Serialization edge is not needed if S and S’ are already ordered in CG

—An SCG represents a set of executions in which all interfering isolated
statements execute in the same order.

4

COMP 322, Spring 2013 (V. Sarkar)

Example of Serialized Computation Graph
with Serialization Edges for v10-v16-v11 order

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10: isolated { x ++; y = 10; }
v11: isolated { x++; y = 11; }
v16: isolated { x++; y = 16; }

5

 Data race definition can be applied to Serialized
Computation Graphs (SCGs) just like regular CGs	

— Need to consider all possible orderings of interfering isolated
statements to establish data race freedom

COMP 322, Spring 2013 (V. Sarkar)

Object-based isolation in HJ

isolated(obj1, obj2, ...) <body>

• In this case, programmer specifies list of objects for
which isolation is required

• Mutual exclusion is only guaranteed for instances of
isolated statements that have a non-empty intersection
in their object lists
—Standard isolated is equivalent to “isolated(*)” by

default i.e., isolation across all objects
• Implementation can choose to distinguish between

read/write accesses for further parallelism
—Current HJ implementation supports object-based

isolation, but does not exploit read/write distinction

6

COMP 322, Spring 2013 (V. Sarkar)

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree

4. boolean tryLabeling(V n) {
5. isolated(this) if (parent == null) parent=n;

6. return parent == n; // return true for success
7. } // tryLabeling
8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {
10. V child = neighbors[i];

11. if (child.tryLabeling(this))
12. async child.compute(); //escaping async
13. }

14. } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

Parallel Spanning Tree Algorithm using
Object-based isolation

7

COMP 322, Spring 2013 (V. Sarkar)

The Actor Model (Lectures 21, 22)

• An actor may:
—process messages
—read/write local state
—create a new actor
—start a new actor
—send messages to

other actors
—terminate

• An actor processes
messages
sequentially
—guaranteed mutual

exclusion on accesses
to local state

Thread

State

Mailbox
create

8

send

Thread

State

Mailbox

State

Mailbox

Thread

State

Mailbox

start

COMP 322, Spring 2013 (V. Sarkar)9

Actor Life Cycle

Actor states

l New: Actor has been created

l e.g., email account has been created
l Started: Actor can receive and process messages

l e.g., email account has been activated
l Terminated: Actor will no longer processes messages

l e.g., termination of email account after graduation

COMP 322, Spring 2013 (V. Sarkar)10

Using Actors in HJ
l Create your custom class which extends hj.lang.Actor<Object> ,and

implement the void process() method
class MyActor extends Actor<Object> {
 protected void process(Object message) {
 System.out.println(“Processing “ + message);
} }

l Instantiate and start your actor
!Actor<Object> anActor = new MyActor(); anActor.start()

l Send messages to the actor
 anActor.send(aMessage); //aMessage can be any object in general

l Use a special message to terminate an actor
 protected void process(Object message) {
 if (message.someCondition()) exit();
 }

l Actor execution implemented as async tasks in HJ
l Can use finish to await completion of an actor!

COMP 322, Spring 2013 (V. Sarkar)11

ThreadRing (Coordination) Example

3 1

0

2

1. finish {
2. int numThreads = 4;
3. int numberOfHops = 10;
4. ThreadRingActor[] ring =

 new ThreadRingActor[numThreads];
5. for(int i=numThreads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start();
8. if (i < numThreads - 1) {
9. ring[i].nextActor(ring[i + 1]);
10. } }
11. ring[numThreads-1].nextActor(ring[0]);
12. ring[0].send(numberOfHops);
13. } // finish

14. class ThreadRingActor
15. extends Actor<Object> {
16. private Actor<Object> nextActor;
17. private final int id;
18. ...
19. public void nextActor(

 Actor<Object> nextActor) {...}
20. void process(Object theMsg) {
21. if (theMsg instanceof Integer) {
22. Integer n = (Integer) theMsg;
23. if (n > 0) {
24. println("Thread-" + id +
25. " active, remaining = " + n);
26. nextActor.send(n - 1);
27. } else {
28. println("Exiting Thread-"+ id);
29. nextActor.send(-1);
30. exit();
31. }
32. } else {
33. /* ERROR - handle appropriately */
34. } } }

COMP 322, Spring 2013 (V. Sarkar)12

Summary of Mutual Exclusion approaches in HJ

l Isolated --- analogous to critical sections
l Object-based isolation, isolated(a, b, ...)

l Single object in list --- like monitor operations on object
l Multiple objects in list --- deadlock-free mutual exclusion

on sets of objects
l Java atomic variables --- optimized implementation of

object-based isolation
l Java concurrent collections --- optimized implementation of

monitors
l Actors --- different paradigm from task parallelism (mutual

exclusion by default)

COMP 322, Spring 2013 (V. Sarkar)

Linearizability of Concurrent Objects
(Lectures 22, 23)

Concurrent object

• A concurrent object is an object that can correctly handle methods
invoked in parallel bylin different tasks or threads

—Examples: concurrent queue, AtomicInteger

Linearizability
• Assume that each method call takes effect “instantaneously” at

some distinct point in time between its invocation and return.

• An execution is linearizable if we can choose instantaneous points
that are consistent with a sequential execution in which methods
are executed at those points

• An object is linearizable if all its possible executions are
linearizable

13

COMP 322, Spring 2013 (V. Sarkar)

Example 1

time

q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

linearizable
q.enq(x)

q.enq(y) q.deq():x

q.deq(y)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

14

COMP 322, Spring 2013 (V. Sarkar)

Example 2

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

15

COMP 322, Spring 2013 (V. Sarkar)

Safety vs. Liveness
(Lecture 24)

• In a concurrent setting, we need to specify both the safety and
the liveness properties of an object

• Need a way to define
—Safety: when an implementation is correct
—Liveness: the conditions under which it guarantees progress

• Data race freedom is a desirable safety property for most
parallel programs

• Linearizability is a desirable safety property for most
concurrent objects

16

COMP 322, Spring 2013 (V. Sarkar)

Liveness Guarantees
• Liveness = a program’s ability to make progress in a

timely manner

• Different levels of liveness guarantees (from weaker to
stronger)
—Deadlock freedom
—Livelock freedom
—Starvation freedom
—Bounded wait

17

COMP 322, Spring 2013 (V. Sarkar)

Two-way Parallel ArraySum using Java
threads (Lecture 24)

18

COMP 322, Spring 2013 (V. Sarkar)

Objects and Locks in Java ---
synchronized statements and methods (Lecture 25)

• Every Java object has an associated lock acquired via:
— synchronized statements

– synchronized(foo) { // acquire foo’s lock
 // execute code while holding foo’s lock
} // release foo’s lock

— synchronized methods
– public synchronized void op1() { // acquire ‘this‘ lock

 // execute method while holding ‘this’ lock
} // release ‘this’ lock

• Java language does not enforce any relationship between object used for
locking and objects accessed in isolated code
—If same object is used for locking and data access, then the object

behaves like a monitor
• Locking and unlocking are automatic

—Locks are released when a synchronized block exits
• By normal means: end of block reached, return, break
• When an exception is thrown and not caught

19

COMP 322, Spring 2013 (V. Sarkar)

Implementation of Java synchronized
statements/methods

• Every object has an associated lock

• “synchronized” is translated to matching monitorenter and
monitorexit bytecode instructions for the Java virtual machine
—monitorenter requests “ownership” of the object’s lock
—monitorexit releases “ownership” of the object’s lock

• If a thread performing monitorenter does not own the lock
(because another thread already owns it), it is placed in an
unordered “entry set” for the object’s lock

20

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent.locks.Lock interface
(Lecture 26)

 interface Lock {

 void lock();

 void lockInterruptibly() throws InterruptedException;

 boolean tryLock(); // return false if lock is not obtained

 boolean tryLock(long timeout, TimeUnit unit)

 throws InterruptedException;

 void unlock();

 Condition newCondition();

 // can associate multiple condition vars with lock

}

• java.util.concurrent.locks.Lock interface is implemented by
java.util.concurrent.locks.ReentrantLock class

21

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent.locks.ReadWriteLock
interface

 interface ReadWriteLock {

 Lock readLock();

 Lock writeLock();

 }

• Even though the interface appears to just define a pair of locks, the
semantics of the pair of locks is coupled as follows
—Case 1: a thread has successfully acquired writeLock().lock()

– No other thread can acquire readLock() or writeLock()
—Case 2: no thread has acquired writeLock().lock()

– Multiple threads can acquire readLock()
– No other thread can acquire writeLock()

• java.util.concurrent.locks.ReadWriteLock interface is implemented by
java.util.concurrent.locks.ReadWriteReentrantLock class

22

COMP 322, Spring 2013 (V. Sarkar)

Java Executors and Synchronizers
(Lecture 28)

• Atomic variables
—The key to writing lock-free algorithms

• Concurrent Collections:
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Synchronizers: Semaphore, Latch, Barrier, Exchanger
—Ready made tools for thread coordination

23

COMP 322, Spring 2013 (V. Sarkar)

Summary: Relating j.u.c. libraries to HJ
constructs

• Executors
— Executor
— ExecutorService
— ScheduledExecutorService
— Callable
— Future
— ScheduledFuture
— Delayed
— CompletionService
— ThreadPoolExecutor
— ScheduledThreadPoolExecutor
— AbstractExecutorService
— Executors
— FutureTask
— ExecutorCompletionService

• Queues
— BlockingQueue
— ConcurrentLinkedQueue
— LinkedBlockingQueue
— ArrayBlockingQueue
— SynchronousQueue
— PriorityBlockingQueue
— DelayQueue

• Atomics: java.util.concurrent.atomic
— Atomic[Type]
— Atomic[Type]Array
— Atomic[Type]FieldUpdater
— Atomic{Markable,Stampable}Reference

• Concurrent Collections
— ConcurrentMap
— ConcurrentHashMap
— CopyOnWriteArray{List,Set}

• Locks: java.util.concurrent.locks
— Lock
— Condition
— ReadWriteLock
— AbstractQueuedSynchronizer
— LockSupport
— ReentrantLock
— ReentrantReadWriteLock

• Synchronizers
— CountDownLatch
— Semaphore
— Exchanger
— CyclicBarrier

Can be used as is in HJ programs

Many uses of j.u.c.locks &
synchronized can be

replaced by HJ isolated

Many uses can be replaced
by finish, phasers, and
data-driven futures

Many uses can be
replaced by async,

finish, futures, forall

Do not use
BlockingQueue in HJ

programs, and take care
to avoid infinite loops on
retrieval operations on
non-blocking queues

24

Can be used as is in HJ programs

COMP 322, Spring 2013 (V. Sarkar)25

The Dining Philosophers Problem
(Lecture 29)

Constraints
• Five philosophers either eat

or think
• They must have two forks to

eat (don’t ask why)
• Can only use forks on either

side of their plate
• No talking permitted
Goals
• Progress guarantees

• Deadlock freedom
• Livelock freedom
• Starvation freedom
• Bounded wait

• Maximize concurrency when
eating

0

1

2

0

3

11

4

0

1
2

3

4

COMP 322, Spring 2013 (V. Sarkar)28

Deadlock Livelock Starvation Non-
concurrency

Solution 1:
synchronized

Yes No Yes Yes

Solution 2:
tryLock/
unLock

No Yes Yes Yes

Solution 3:
isolated

No No Yes Yes

Solution 4:
object-based
isolation

No No Yes No

Solution 5:
semaphores

No No No No

Solution 6:
actors

No Yes Yes No

COMP 322, Spring 2013 (V. Sarkar)

Places in HJ (Lecture 30)
here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id returns the id of the place as an int

async at(P) S
• Creates new task to execute statement S at place P

• async S is equivalent to async at(here) S

• Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child task is
executing, not the place where the parent task is executing

27

COMP 322, Spring 2013 (V. Sarkar)

Example of –places 4:2 option on an 8-core
node (4 places w/ 2 workers per place)

Place 1

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

Place 0 Place 1

Place 2 Place 3

// Main program starts at place 0
async at(place.factory.place(0)) S1;
async at(place.factory.place(0)) S2;

async at(place.factory.place(1)) S3;
async at(place.factory.place(1)) S4;
async at(place.factory.place(1)) S5;

async at(place.factory.place(2)) S6;
async at(place.factory.place(2)) S7;
async at(place.factory.place(2)) S8;

async at(place.factory.place(3)) S9;
async at(place.factory.place(3)) S10;

28

COMP 322, Spring 2013 (V. Sarkar)

Example HJ program with places

29

COMP 322, Spring 2013 (V. Sarkar)7 COMP 322, Spring 2013 (V. Sarkar)

Adding support for places in HJ actors
(Lecture 31)

l Basic approach: include an optional place parameter in the
start() method

Actor<Object> anActor = new MyActor();

anActor.start(p); // Start actor at place p
l Example:

SievePlaceActor nextActor = new SievePlaceActor(...);

// Start actor at next place, relative to current place

nextActor.start(here.next());

// This ensures locality with respect to local primes stored

COMP 322, Spring 2013 (V. Sarkar)8 COMP 322, Spring 2013 (V. Sarkar)

Actor and Places
• Places act as containers for Actors
• Actors from different places can send each other messages
• Actor always processes the message in a specified place

• Easier to achieve data locality via local state

Place-0 Place-n

COMP 322, Spring 2013 (V. Sarkar)

Introduction to MPI (Lectures 32, 33, 34)

1.import mpi.*;
2.class Hello {
3. static public void main(String[] args) {
4. // Init() be called before other MPI calls
5. MPI.Init(args); /
6. int npes = MPI.COMM_WORLD.Size()
7. int myrank = MPI.COMM_WORLD.Rank() ;
8. System.out.println(”My process number is ” + myrank);
9. MPI.Finalize(); // Shutdown and clean-up
10. }
11.}

main() is enclosed in an
implicit “forall” --- each
process runs a separate
instance of main() with
“index variable” = myrank

32

COMP 322, Spring 2013 (V. Sarkar)

Example with Send and Recv
1.import mpi.*;

3.class myProg {
4. public static void main(String[] args) {
5. int tag0 = 0;
6. MPI.Init(args); // Start MPI computation
7. if (MPI.COMM_WORLD.rank() == 0) { // rank 0 = sender
8. int loop[] = new int[1]; loop[0] = 3;
9. MPI.COMM_WORLD.Send("Hello World!", 0, 12, MPI.CHAR, 1, tag0);
10. MPI.COMM_WORLD.Send(loop, 0, 1, MPI.INT, 1, tag0);
11. } else { // rank 1 = receiver
12. int loop[] = new int[1]; char msg[] = new char[12];
13. MPI.COMM_WORLD.Recv(msg, 0, 12, MPI.CHAR, 0, tag0);
14. MPI.COMM_WORLD.Recv(loop, 0, 1, MPI.INT, 0, tag0);
15. for (int i = 0; i < loop[0]; i++) System.out.println(msg);
16. }
17. MPI.Finalize(); // Finish MPI computation
18. }
19.}

Send() and Recv() calls are blocking operations by default

33

COMP 322, Spring 2013 (V. Sarkar)34

Approach #1 to Deadlock Avoidance ---
Reorder Send and Recv calls

We can break the circular wait to avoid deadlocks as follows:

int a[], b[];
...
if (MPI.COMM_WORLD.rank() == 0) {
 MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
 MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
}
else {
 Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0,
1);
 Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0,
2);
}
...

COMP 322, Spring 2013 (V. Sarkar)35

Using Sendrecv for Deadlock Avoidance
in Scenario #2

Consider the following piece of code, in which process i sends a message to
process i + 1 (modulo the number of processes) and receives a message from

process i - 1 (modulo the number of processes)

int a[], b[];
. . .
int npes = MPI.COMM_WORLD.size();
int myrank = MPI.COMM_WORLD.rank()
MPI.COMM_WORLD.Sendrecv(a, 0, 10, MPI.INT, (myrank+1)%npes, 1,
 b, 0, 10, MPI.INT, (myrank-1+npes)%npes,
1);

...

A combined Sendrecv() call avoids deadlock in this case

COMP 322, Spring 2013 (V. Sarkar)

Simple Irecv() example
• The simplest way of waiting for completion of a single non-

blocking operation is to use the instance method Wait() in the
Request class, e.g:
// Post a receive operation
Request request = Irecv(intBuf, 0, n, MPI.INT,
 MPI.ANY_SOURCE, 0) ;

// Do some work while the receive is in progress
…

// Finished that work, now make sure the message has
arrived

Status status = request.Wait() ;

// Do something with data received in intBuf
…

• The Wait() operation is declared to return a Status object. In
the case of a non-blocking receive operation, this object has
the same interpretation as the Status object returned by a
blocking Recv() operation.

36

COMP 322, Spring 2013 (V. Sarkar)

Collective Communications
• Each collective operation is defined over a communicator

(most often, MPI.COMM_WORLD)
— Each collective operation contains an implicit barrier. The operation

completes and execution continues when all processes in the
communicator perform the same collective operation.

—A mismatch in operations results in deadlock e.g.,
Process 0: MPI.Bcast(...)
Process 1: MPI.Bcast(...)
Process 2: MPI.Gather(...)

• We can model the synchronization performed by MPI operations as
phasers to understand their semantics

— Assume that all processes are registered on multiple phasers, one for
each kind of collective operation e.g., ph1 for Bcast, ph2 for Gather

—The above example can be rewritten as follows, where doNext()
performs a “next” operation on one phaser only
Process 0: ph1.doNext();
Process 1: ph1.doNext();
Process 2: ph2.doNext();

37

COMP 322, Spring 2013 (V. Sarkar)

Examples of Collective Operations
void Barrier()

– Blocks the caller until all processes in the group have called it.

void Gather(Object sendbuf, int sendoffset, int sendcount,
Datatype sendtype, Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype, int root)

– Each process sends the contents of its send buffer to the root process.

void Scatter(Object sendbuf, int sendoffset, int sendcount,
Datatype sendtype, Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype, int root)

– Inverse of the operation Gather.

void Reduce(Object sendbuf, int sendoffset, Object recvbuf,
int recvoffset, int count, Datatype datatype, Op op,
int root)

– Combine elements in send buffer of each process using the reduce
operation, and return the combined value in the receive buffer of the
root process.

38

COMP 322, Spring 2013 (V. Sarkar)

Operations on Sets of Key-Value Pairs
(Lecture 35)

• Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki,
vi) consists of a key, ki, and a value, vi.
—Assume that the key and value objects are immutable,

and that equality comparison is well defined on all key
objects.

• Map function f generates sets of intermediate key-value
pairs, f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}. The kj′ keys can
be different from ki key in the input of the map function.
—Assume that a flatten operation is performed as a

post-pass after the map operations, so as to avoid
dealing with a set of sets.

• Reduce operation groups together intermediate key-
value pairs, {(k′, vj′)} with the same k’, and generates a
reduced key-value pair, (k′,v′′), for each such k’, using
reduce function g

39

COMP 322, Spring 2013 (V. Sarkar)

MapReduce: The Map Step

vk

k' v'

k' v'
map

vk

vk

…
k' v'

map

Input set of
key-value pairs

Flattened intermediate
set of key-value pairs

…

k' v'map

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

40

COMP 322, Spring 2013 (V. Sarkar)

MapReduce: The Reduce Step

k' v'

…

k' v'

k' v'

k' v'

Intermediate
key-value pairs

group

reduce

reduce
k' v''

v''

v''

…

k' v'

…

k' v'

k' v' v'

v' v'

Key-value groups
Output
key-value pairs

k'

k'

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

41

COMP 322, Spring 2013 (V. Sarkar)

Algorithms for MapReduce
• Sorting

• Searching

• Indexing

• Classification

• TF-IDF

• Breadth-First Search / SSSP

• PageRank

• Clustering

42

COMP 322, Spring 2013 (V. Sarkar)

Inverted Index: Data flow

This page contains
so much text

My page contains
text too

Foo

Bar

contains: Bar
My: Bar
page : Bar
text: Bar
too: Bar

contains: Foo
much: Foo
page : Foo
so : Foo
text: Foo
This : Foo

contains: Foo, Bar
much: Foo
My: Bar
page : Foo, Bar
so : Foo
text: Foo, Bar
This : Foo
too: Bar

Reduced output

Foo map output

Bar map output

43

COMP 322, Spring 2013 (V. Sarkar)

UPC Execution Model (Lecture 36)
• Multiple threads working independently in a SPMD fashion

—MYTHREAD specifies thread index (0..THREADS-1)
– Like MPI processes and ranks

—# threads specified at compile-time or program launch

• Partitioned Global Address Space (different from MPI)

• Threads synchronize as necessary using using
—synchronization primitives
—shared variables

44

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #36: UPC data distributions

In the following example from slide 23, assume that each UPC array is
distributed by default across threads with a cyclic distribution. In the space
below, identify an iteration of the upc_forall construct for which all array
accesses are local, and an iteration for which all array accesses are non-local
(remote). Explain your answer in each case.

shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; (i*THREADS)/100)
 a[i] = b[i] * c[i];

45

Solution:
• Iteration 0 has affinity with thread 0, and accesses a[0], b[0],
c[0], all of which are located locally at thread 0
• Iteration 1 has affinity with thread 0, and accesses a[1], b[1],
c[1], all of which are located remotely at thread 1

COMP 322, Spring 2013 (V. Sarkar)46

Comparison of Multicore Programming Models
along Selected Dimensions
Dynamic

Parallelism
Locality Control Mutual Exclusion Collective & Point-

to-point
Synchronization

Data Parallelism

Cilk Spawn, sync None Locks None None

Java
Concurrency

Executors,
Task Queues

None Locks, monitors,
atomic classes

Synchronizers Concurrent collections

Intel C++
Threading
Building Blocks

Generic
algorithms,

tasks

None Locks, atomic
classes

None Concurrent containers

.Net Parallel
Extensions

Generic
algorithms,

tasks

None Locks, monitors Futures PLINQ

OpenMP SPMD (v2.5),
Tasks (v3.0)

None Locks, critical,
atomic

Barriers None

CUDA None until
recently (v5)

Device, grid, block,
threads

None Barriers SPMD

Habanero-Java
(builds on Java
Concurrency)

Async, finish Places Isolated blocks,
Java atomic

classes

Phasers, futures,
data-driven tasks

Parallel array
operations, Java

concurrent collections

COMP 322, Spring 2013 (V. Sarkar)

Announcements (Recap)
• Graded midterm exams can be picked up from Sherry Nassar in

Duncan Hall 3139

• Homework 6 is officially due today, but everyone can get an
automatic penalty-free extension till April 26th
—No need to send a request for this extension

• Final exam will be given today to be taken in any two-hour
duration returned to Sherry Nassar by April 26th (as was done
with midterm exams)
— Final exam will cover material from Lectures 19 - 36

• Today is the last lecture!

47

COMP 322, Spring 2013 (V. Sarkar)

Acknowledgments
• Graduate TAs

—Kumud Bhandari
—Deepak Majeti
—Sriraj Paul
—Rishi Surendran

• Undergraduate TAs
—Annirudh Prasad
—Yunming Zhang

• HJ consultants
—Vincent Cave
—Max Grossman
—Shams Imam

• Administrative assistant
—Sherry Nassar

48

“Education is
what survives

when what has
been learned

has been
forgotten”

B.F. Skinner

Have a great
summer!!

