Worksheet \#11: One-dimensional Iterative Averaging Example

Name: \qquad Netid: \qquad

1) Assuming $n=9$ and the input array below, perform a "half-iteration" of the iterative averaging example by only filling in the blanks for odd values of j in the myNew[] array (different from the real algorithm). Recall that the computation is "myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;"

index, \mathbf{j}	0	1	2	3	4	5	6	7	8	9	10
myVal	0	0	0.2	0	0.4	0	0.6	0	0.8	0	1
myNew	0		0.2		0.4		0.6		0.8		1

2) Will the contents of myVal[] and myNew[] change in further iterations? 3) If m is large enough, write the formula for the final value of myNew[i] as a function of i and n
