COMP 322: Fundamentals of Parallel Programming

Lecture 32: Apache Spark framework for cluster computing

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University
Contact email: vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
Worksheet #31 solution: impact of distribution on parallel completion time (rather than locality)

1. public void sampleKernel(
2. int iterations, int numChunks, Distribution dist) {
3. for (int iter = 0; iter < iterations; iter++) {
4. finish(() -> {
5. forseq (0, numChunks - 1, (jj) -> {
6. asyncAt(dist.get(jj), () -> {
7. doWork(jj);
8. // Assume that time to process chunk jj = jj units
9. });
10. });
11. });
12. } // for iter
13. } // sample kernel

• Assume an execution with n places, each place with one worker thread
• Will a block or cyclic distribution for dist have a smaller abstract completion time, assuming that all tasks on the same place are serialized with one worker per place?

Answer: Cyclic distribution because it leads to better load balance (locality was not a consideration in this problem)
Spark and Iterative Map/Reduce

- After experience with Map/Reduce, users started realizing that a much larger class of algorithms could be expressed as an iterative sequence of map/reduce operations.
 - Many machine learning algorithms fall into this category.
- Tools started to emerge to enable easy expression of multiple map/reduce operations, along with smart scheduling.
- But it is also useful to interactively query large datasets.
- Apache Spark: General purpose functional programming over a cluster.
 - Caches results of map/reduce operations in memory so they can be used on subsequent iterations.
 - Tends to be 10-100 times faster than Hadoop for many applications.
Apache Spark

- Distributed computing framework based on the Scala programming language (on the JVM)
- Multiple JVMs (one per machine in a cluster) are coordinated by a master JVM
The Scala Programming Language

- Scala is a programming language that combines object-oriented and functional language features.

- Scala comes from “SCAlable LAnguage”: Intended to have the feel of a scripting language (read-eval-print loop, type inference) but support for programming in the large (efficient JVM-based implementation, powerful static type system, etc.).

- Many object-oriented design patterns are natively supported (singletons via object definitions, visitors via pattern matching).

- Deep interoperability with Java: Classes can be freely mixed between languages.

- Full-fledged functional language: Anonymous functions, higher order functions, efficient immutable data structures, currying.
The Scala Programming Language

• Small example Scala program:

```scala
object Main {
  def main(args: Array[String]) {
    val result = for (i <- 1:10) yield i*i
    println("Squares: " + result.toString)
  }
}
```

• For more exposure to Scala and functional programming check out Comp 311 this Fall
Spark: Resilient Distributed Datasets

- The key construct in Spark is the Resilient Distributed Dataset (RDD)
- An RDD is an immutable collection, distributed in a reliable way over the machines in a cluster
- The types of the elements in the RDD can be arbitrary elements
- If the elements are pairs, then the RDD acts like a key-value map or table
- Computations on an RDD (including Map/Reduce) can be expressed as functional programming operations
Apache Spark

- Resilience is achieved without significant data replication:
 - The transformations used to compute an RDD are necessarily shared across an nodes, enabling efficient recompilation of elements
 - Transformations are not applied until forced (an advantage of immutability)
Advantages of Immutability

- The distributed nature of RDDs is not evident in the programming model
- RDD elements can be replicated for fault tolerance
- Purely functional operations can be easily defined on RDDs
- The runtime has great flexibility in scheduling operations on RDDs
```scala
val file = spark.textFile("hdfs://...")
val counts = file.flatMap(line => line.split(" "))
  .map(word => (word, 1))
  .reduceByKey((x,y) => x + y)

counts.saveAsTextFile("hdfs://...")
```
val file = spark.textFile("hdfs://...")

val counts = file.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")
val file = spark.textFile("hdfs://...")

val counts = file.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

x.flatMap(f) = x.map(f).flatten()
Wordcount in Apache Spark

(“this is a line”,
 “this is another line”,
 “this is yet another line”)
 .map(line => line.split())
 .flatten()
Wordcount in Apache Spark

(("this", "is", "a", "line"),
 ("this", "is", "another", "line"),
 ("this", "is", "yet", "another", "line"))
 .flatten()
Wordcount in Apache Spark

(“this”, “is”, “a”, “line”, “this”, “is”, “another”, “line”, “this”, “is”, “yet”, “another”, “line”)
Wordcount in Apache Spark

```scala
val file = spark.textFile("hdfs://...")
val counts = file.flatMap(line => line.split(" "))
  .map(word => (word, 1))
  .reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")
```
Wordcount in Apache Spark

("this", "is", "a", "line", "this", "is", "another", "line", "this", "is", "yet", "another", "line")
.map(word => (word, 1))
Wordcount in Apache Spark

(((“this”,1), (“is”,1), (“a”,1), (“line”,1), (“this”,1), (“is”,1), (“another”,1), (“line”,1), (“this”,1), (“is”,1), (“yet”,1), (“another”,1), (“line”,1))
Wordcount in Apache Spark

```scala
val file = spark.textFile("hdfs://...")

val counts = file.flatMap(line => line.split(" "))
  .map(word => (word, 1))
  .reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

x.reduceByKey(f) = x.groupByKey()
  .map(xs =>
    xs.reduce(f))
```
Wordcount in Apache Spark

(((“this”,1), ("is",1), (“a”",1), (“line”,1),
("this",1), ("is",1), ("another",1),
("line",1), ("this",1), ("is",1),
("yet",1),("another",1), ("line",1))
groupByKey().map(xs =>
 xs.reduce
 (a,b => a+b)
Wordcount in Apache Spark

((("this", (1,1,1)),
 ("is", (1,1,1)),
 ("a", (1)),
 ("line", (1,1,1)),
 ("another", (1,1)),
 ("yet", (1))).map(xs => ...)

...
Wordcount in Apache Spark

```scala
(('this', (1,1,1)).reduce(a,b => a+b),
 ('is', (1,1,1)).reduce(a,b => a+b),
 ('a', (1)).reduce(a,b => a+b),
 ('line', (1,1,1)).reduce(a,b => a+b),
 ('another', (1,1)).reduce(a,b => a+b),
 ('yet', (1)).reduce(a,b => a+b))
```
Wordcount in Apache Spark

((“this”, 3), (“is”, 3), (“a”, 1), (“line”, 3), (“another”, 2), (“yet”, 1))
Lazy Evaluation of RDDs

- Map operations (transformations) on RDDs are applied “lazily”:
 - The sequence of operations are built up on elements as a closure
 - The closure is not applied until forced by a reduce operation (actions)

- Many other operations are available on RDDs:
 - map, reduce, sample, groupByKey, reduceByKey, join, ...

- Because RDDs are immutable, all the operations from purely functional programming can be applied and parallelized in a straightforward way
Iterative Map/Reduce Example: Logistic Regression

• Given a collection of examples with various attributes and a label, we wish to predict the labels for new examples:

• \(<\text{height}, \text{weight}, \text{age}, \text{systolic bp}, \text{diastolic bp}>: \text{medicine}\>?

• \(<170 \text{ cm}, 72 \text{ kg}, 52, 120, 80>: \text{YES}\>

• \(<150 \text{ cm}, 60 \text{ kg}, 34 \text{ years}, 130, 70>: \text{NO}\>

• ...
Iterative Map/Reduce Example: Logistic Regression

- We can view the examples as vectors in a high-dimensional vector space.

- The problem of labeling yes/no can be solved by finding the best hyperplane that divides the given examples according to their labels.

- This new hyperplane can be used to predict labels for new examples.
Iterative Map/Reduce Example: Logistic Regression

- We can view the examples as vectors in a high-dimensional vector space.
- The problem of labeling yes/no can be solved by finding the best hyperplane that divides the given examples according to their labels.
- This new hyperplane can be used to predict labels for new examples.
Iterative Map/Reduce Example: Logistic Regression

```scala
case class Point(x: Vector[Double], y: Double)

val points = spark.textFile(...).map(parsePoint).cache()

var w = Vector.random(D) // current separating plane

for (i <- 1 to ITERATIONS) {
  val gradient = points.map(p =>
    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
  ).reduce(_ + _)

  w -= gradient
}

println("Final separating plane: " + w)
```

Example presented in:

val points = spark.textFile(...).map(parsePoint).cache()

var w = Vector.random(D) // current separating plane

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(doWork(1)).reduce(_ + _)

 w -= gradient
}

println("Final separating plane: " + w)

Consider the above simplified regression program.
Let each doWork operation cost 1 unit of work.
What is the total work? What is the CPL?