
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 7: Data Races,

Functional & Structural Determinism

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

!
Contact email: vsarkar@rice.edu

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 7 28 January 2015

Recap:
A binary function f is associative if f(f(x,y),z) = f(x,f(y,z)).
A binary function f is commutative if f(x,y) = f(y,x).
!
Worksheet problems:
1) Claim: a Finish Accumulator (FA) can only be used with operators that are
associative and commutative. Why? What can go wrong with accumulators
if the operator is non-associative or non-commutative?
You may get different answers in different executions if the operator is non-
associative or non-commutative
!
2) For each of the following functions, indicate if it is associative and/or
commutative.
a) f(x,y) = x+y, for integers x, y, is associative and commutative
!
b) g(x,y) = (x+y)/2, for integers x, y, is commutative but not associative
!
c) h(s1,s2) = concat(s1, s2) for strings s1, s2, e.g., h(“ab”,”cd”) = “abcd”, is
associative but not commutative
!
! COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #6 solution:
Associativity and Commutativity

2

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Parallel Programming Challenges
• Correctness

— New classes of bugs can arise in parallel programming, relative to
sequential programming
– Data races, deadlock, nondeterminism

• Performance
— Performance of parallel program depends on underlying parallel system

– Language compiler and runtime system
– Processor structure and memory hierarchy
– Degree of parallelism in program vs. hardware

• Portability
— A buggy program that runs correctly on one system may not run correctly

on another (or even when re-executed on the same system)
— A parallel program that performs well on one system may perform poorly on

another

3

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Data Races (Recap from Lecture 2)
 A data race occurs on location L in a program execution with

computation graph CG if there exist steps (nodes) S1 and S2 in CG
such that:
1. S1 does not depend on S2 and S2 does not depend on S1, i.e., S1

and S2 can potentially execute in parallel, and
2. Both S1 and S2 read or write L, and at least one of the accesses is

a write.
• A data-race is an error. The result of a read operation in a data race

is undefined. The result of a write operation is undefined if there are
two or more writes to the same location.

• A program is data-race-free it cannot exhibit a data race for any input
!

• Above definition includes all “potential” data races i.e., we consider
it to be a data race even if S1 and S2 are scheduled on the same
processor.

4

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example of a Data Race

5

1. // Start of Task T0 (main program)

2. sum1 = 0; sum2 = 0; // sum1 & sum2 are static fields

3. async { // Task T0 computes sum of lower half of array

4. for(int i=0; i < X.length/2; i++)

5. sum1 += X[i];

6. }

7. async { // Task T1 computes sum of upper half of array

8. for(int i=X.length/2; i < X.length; i++)

9. sum2 += X[i];

10. }

11. // Task T0 waits for Task T1 (join)

12. return sum1 + sum2;

Data race between accesses of sum1 in async and in main program

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Formal Definition of Data Races
 A data race occurs on location L in a program execution with

computation graph CG if there exist steps (nodes) S1 and S2
in CG such that:
1. S1 does not depend on S2 and S2 does not depend on S1

i.e., there is no path of dependence edges from S1 to S2 or
from S2 to S1 in CG, and

2. Both S1 and S2 read or write L, and at least one of the
accesses is a write. (L must be a shared location i.e., a
static field, instance field, or array element.)

• A program is data-race-free it cannot exhibit a data race for
any input

• Above definition includes all “potential” data races i.e., it’s
considered a data race even if S1 and S2 execute on the same
processor

6

Recap of Java’s Storage Model

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

1. static
fields !

SHARED

3. Local vars !
PRIVATE

2. heap
data:

objects,
arrays !

SHARED

Local vars !
PRIVATE

Java’s storage model contains three memory regions:

1. Static Data: region of memory reserved for variables that
are not allocated or destroyed during a class’ lifetime,
such as static fields.

• Static fields can be shared among threads/tasks

2. Heap Data: region of memory for dynamically allocated
objects and arrays (created by “new”).

• Heap data can be shared among threads/tasks

3. Stack Data: Each time you call a method, Java allocates a
new block of memory called a stack frame to hold its local
variables

• Local variables are private to a given thread/task
• No data races possible on local variables

NOTE: all references (pointers) must point to heap data ---
no references can point to static or stack data . . .

7

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Functional vs. Structural Determinism

• A parallel program is said to be functionally
deterministic if it always computes the same answer
when given the same input

• A parallel program is said to be structurally
deterministic if it always produces the same
computation graph when given the same input

• Data-Race-Free Determinism Property
—If a parallel program is written using the constructs

learned so far (finish, async, futures) and is known to
be data-race-free, then it must be both functionally
deterministic and structurally deterministic

8

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Functional + Structural Determinism
(V1 of Parallel Search)

1. // Count all occurrences!

2. a = new ACCUM(SUM, int)!

3. finish(a) for (int i = 0; i <= N - M; i+
+) !

4. async { !

5. for (j = 0; j < M; j++) !

6. if (text[i+j] != pattern[j]) break; !

7. if (j == M) a.put(1); // found!

8. }!

9. print a.get();

9

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Functional + Structural Determinism
(V2 of Parallel Search)

1. // Existence of an occurrence!

2. found = false!

3. finish for (int i = 0; i <= N - M; i++) !

4. async { !

5. for (j = 0; j < M; j++) !

6. if (text[i+j] != pattern[j]) break; !

7. if (j == M) found = true; !

8. }!

9. print found

10

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Functional Nondeterminism + Structural
Determinism!

 // Index of an occurrence
1. static int index = -1; // static field!

2. . . .!

3. finish for (int i = 0; i <= N - M; i++)
async { !

4. for (j = 0; j < M; j++) !

5. if (text[i+j] != pattern[j]) break; !

6. if (j == M) index = i; // found at i!

7. }

11

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Functionally Determinism + Structural
Nondeterminism (V4 of Parallel Search)
1. static boolean found = false; //static

field

2. . . .

3. finish for (int i = 0; i <= N - M; i++) {

4. if (found) break; // Eureka!

5. async {

6. for (j = 0; j < M; j++)

7. if (text[i+j] != pattern[j]) break;

8. if (j == M) found = true;

9. } // async

10. } // finish-for

12

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Functionally Nondeterminism +
Structural Nondeterminism (V5 of

1. static int index = -1; // static field!

2. . . .!
3. finish for (int i = 0; i <= N - M; i++) {

4. if (index != -1) break; // Eureka!

5. async {

6. for (j = 0; j < M; j++)

7. if (text[i+j] != pattern[j]) break;

8. if (j == M) index = i;

9. } // async

10. } // finish-for

13

Data Race
Free?

Functionally
Deterministic?

Structurally
Deterministic?

Example: String Search
variation

Yes Yes Yes Count of all occurrences
No Yes Yes Existence of an occurrence
No No Yes Index of any occurrence
No Yes No “Eureka” extension for

existence of an occurrence: do
not create more async tasks
after occurrence is found

No No No “Eureka” extension for index of
an occurrence: do not create
more async tasks after
occurrence is found

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

A Classification of Parallel Programs

14

Data-Race-Free Determinism Property implies that it is not possible to write an
HJ program with Yes in column 1, and No in column 2 or column 3 (when only
using Module 1 constructs)

