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Worksheet #7 Solution: Identifying Data 
Races
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Identify as many “racy” 
statement pairs as you 
can in the pseudoccode 
shown on the right, e.g., 
(Si, Sj) if there is a 
potential data race 
between Si and Sj 
!
(S2,S3) 
(S2,S5) 
(S2,S6) 
(S2,S7) 
(S2,S10) 
(S2,S11) 
(S2,S12) 

Example parallel program: 

1. p.x = 0; q = p;!

2. async p.x = 1; // Task T1!

3. async p.x = 2; // Task T2!

4. async { // Task T3!

5.   System.out.println("First read = " + p.x);!

6.   System.out.println("Second read = " + p.x);!

7.   System.out.println("Third read = " + p.x)!

8. }!

9. async { // Task T4!

10.  System.out.println("First read = " + p.x);!

11.  System.out.println("Second read = " + q.x);!

12.  System.out.println("Third read = " + p.x);!

13.}

!
!
(S3,S5) 
(S3,S6) 
(S3,S7) 
(S3,S10) 
(S3,S11) 
(S3,S12) 



Parallelism is the dominant technology 
trend in Cloud Computing
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• Parallel Requests 
Assigned to computer 
e.g., Search “Rice 

Marching Owl Band” 
• Parallel Threads 

Assigned to core 
e.g., Lookup, Ads 

• Parallel Instrs 
>1 instruction/cycle 
e.g., 5 pipelined 

instructions 
• Parallel Data 

>1 data access/cycle 
e.g., Load of 4 consecutive 
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Parallelism enables “Cloud Computing” 
as a Utility

• Offers computing, storage, communication at pennies per hour  
• No premium to scale: 

      1000 computers @       1 hour  
=       1 computer   @ 1000 hours 

• Illusion of infinite scalability to cloud user 
—As many computers as you can afford 

• Leading examples: Amazon Web Services (AWS), Google App Engine, Microsoft 
Azure 
—Economies of scale pushed down datacenter costs by factors of 3-8X 
—Traditional datacenters utilized 10% - 20% 
—Make profit offering pay-as-you-go use service at less than your costs for as 

many computers as you need 
—Strategic capability for company’s needs 

• Challenge: portable and scalable parallelism at cloud scale 
—One solution: leverage functional programming with Map-Reduce pattern
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Streaming data requirements have 
skyrocketed

• AT&T processes roughly 30 petabytes per day through its 
telecommunications network  

• Google processed roughly 24 petabytes per day in 2009 

• Facebook, Amazon, Twitter, etc, have comparable throughputs 

• Two Sigma maintains over 100 teraflops of private computing 
power, continuously computing over 11 petabytes of quantitative 
data 

• (By comparison, the IBM Watson knowledge base stored roughly 4 
terabytes of data when winning at Jeopardy)
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Parallelism enables processing of big data

• Continuously streaming data needs to be processed at least as fast 
as it is accumulated, or we will never catch up 

• The bottleneck in processing very large data sets is dominated by 
the speed of disk access 

• More processors accessing more disks enables faster processing
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MapReduce Pattern

• Apply Map function f to user supplied record of key-
value pairs 

• Compute set of intermediate key/value pairs 
• Apply Reduce operation g to all values that share 

same key to combine derived data properly 
—Often produces smaller set of values 

• User supplies Map and Reduce operations in 
functional model so that the system can parallelize 
them, and also re-execute them for fault tolerance
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MapReduce: The Map Step
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Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt
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MapReduce: The Reduce Step
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Map Reduce: Summary

• Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi) 
consists of a key, ki, and a value, vi.  
—Assume that the key and value objects are immutable, and 

that equality comparison is well defined on all key objects. 
• Map function f generates sets of intermediate key-value pairs,  

f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}.  The kj′ keys can be different 
from ki key in the input of the map function. 
—Assume that a flatten operation is performed as a post-

pass after the map operations, so as to avoid dealing with a 
set of sets. 

• Reduce operation groups together intermediate key-value 
pairs, {(k′, vj′)} with the same k’, and generates a reduced key-
value pair, (k′,v′′), for each such k’, using reduce function g
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Google Uses MapReduce For …

• Web crawl: Find outgoing links from HTML documents, 
aggregate by target document 

• Google Search: Generating inverted index files using a 
compression scheme 

• Google Earth: Stitching overlapping satellite images to 
remove seams and to select high-quality imagery 

• Google Maps: Processing all road segments on Earth and 
render map tile images that display segments 

• More than 10,000 MR programs at Google in 4 years, run 
100,000 MR jobs per day (2008)
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Map/Reduce: State of Practice

• Apache Hadoop now dominates use of the Map/Reduce 
framework 

• Often, hadoop map/reduce functions are no longer written 
directly 
—Instead, a user writes a query in a very high level language 

and uses another tool to compile the query into map/reduce 
functions! 
– Hive (another Apache project) compiles SQL queries 

into map/reduce 
– Pig (yet another Apache project) compiles direct 

relational algebra into map/reduce
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Map/Reduce: State of Practice

• Eventually, users started realizing that a much larger class of 
algorithms could be expressed as an iterative sequence of map/
reduce operations 
—Many machine learning algorithms fall into this category 

• Tools started to emerge to enable easy expression of multiple map/
reduce operations, along with smart scheduling 

• Apache Spark: General purpose functional programming over a 
cluster 
—Caches results of map/reduce operations in memory so they can 

be used on subsequent iterations 
—Tends to be 10-100 times faster than Hadoop for many 

applications
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MapReduce Execution

Fine granularity 
tasks: many more 
map tasks than 
machines

2000 servers =>  
≈ 200,000 Map Tasks, ≈ 
5,000 Reduce tasks

Bucket sort 
to get same keys 
together
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WordCount example
Input: set of words 
Output: set of (word,count) pairs 
Algorithm: 
1. For each input word W, emit (W, 1) as a key-value pair (map step). 
2. Group together all key-value pairs with the same key (reduce step). 
3. Perform a sum reduction on all values with the same key(reduce step). 

• All map operations in step 1 can execute in parallel with only local data 
accesses 

• Step 2 may involve a major reshuffle of data as all key-value pairs with 
the same key are grouped together. 

• Step 3 performs a standard reduction algorithm for all values with the 
same key, and in parallel for different keys.
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PseudoCode for WordCount
1.  map(String input_key, String input_value): 
2.    // input_key: document name 
3.    // input_value: document contents 
4.    for each word w in input_value: 
5.      EmitIntermediate(w, "1"); // Produce count of words 
6. !

7.  reduce(String output_key, Iterator intermediate_values): 
8.    // output_key: a word 
9.    // intermediate_values: a list of counts 
10.    int result = 0; 
11.    for each v in intermediate_values: 
12.      result += ParseInt(v); // get integer from key-value 
13.    Emit(AsString(result));
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Example Execution of WordCount Program

that that is is that that is not is not is that it it is

is 1, that 2 is 1, that 2 is 2, not 2 is 2, it 2, that 1
Map 1 Map 2 Map 3 Map 4

Reduce 1 Reduce 2
is 6; it 2 not 2; that 5

Shuffle

Collect

is 6; it 2; not 2; that 5 

Distribute

that 2,2,1 
not 2

is 1,1,2,2 
it 2 
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