
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 8: Map Reduce

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

!
Contact email: vsarkar@rice.edu

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 8 30 January 2015

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksheet #7 Solution: Identifying Data
Races

2

Identify as many “racy”
statement pairs as you
can in the pseudoccode
shown on the right, e.g.,
(Si, Sj) if there is a
potential data race
between Si and Sj
!
(S2,S3)
(S2,S5)
(S2,S6)
(S2,S7)
(S2,S10)
(S2,S11)
(S2,S12)

Example parallel program:

1. p.x = 0; q = p;!

2. async p.x = 1; // Task T1!

3. async p.x = 2; // Task T2!

4. async { // Task T3!

5. System.out.println("First read = " + p.x);!

6. System.out.println("Second read = " + p.x);!

7. System.out.println("Third read = " + p.x)!

8. }!

9. async { // Task T4!

10. System.out.println("First read = " + p.x);!

11. System.out.println("Second read = " + q.x);!

12. System.out.println("Third read = " + p.x);!

13.}

!
!
(S3,S5)
(S3,S6)
(S3,S7)
(S3,S10)
(S3,S11)
(S3,S12)

Parallelism is the dominant technology
trend in Cloud Computing

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

• Parallel Requests
Assigned to computer
e.g., Search “Rice

Marching Owl Band”
• Parallel Threads

Assigned to core
e.g., Lookup, Ads

• Parallel Instrs
>1 instruction/cycle
e.g., 5 pipelined

instructions
• Parallel Data

>1 data access/cycle
e.g., Load of 4 consecutive

words

Smart  
Phone

Warehouse
Scale

Computer

Software Hardware

Leverage 
Parallelism to

Achieve
Energy-Efficient

High 
Performance

Core Core…
 Memory

Input/Output

Computer

Cache Memory

 Instruction
Unit(s)

 Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

3

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Parallelism enables “Cloud Computing”
as a Utility

• Offers computing, storage, communication at pennies per hour
• No premium to scale:

 1000 computers @ 1 hour  
= 1 computer @ 1000 hours

• Illusion of infinite scalability to cloud user
—As many computers as you can afford

• Leading examples: Amazon Web Services (AWS), Google App Engine, Microsoft
Azure
—Economies of scale pushed down datacenter costs by factors of 3-8X
—Traditional datacenters utilized 10% - 20%
—Make profit offering pay-as-you-go use service at less than your costs for as

many computers as you need
—Strategic capability for company’s needs

• Challenge: portable and scalable parallelism at cloud scale
—One solution: leverage functional programming with Map-Reduce pattern

4

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Streaming data requirements have
skyrocketed

• AT&T processes roughly 30 petabytes per day through its
telecommunications network

• Google processed roughly 24 petabytes per day in 2009

• Facebook, Amazon, Twitter, etc, have comparable throughputs

• Two Sigma maintains over 100 teraflops of private computing
power, continuously computing over 11 petabytes of quantitative
data

• (By comparison, the IBM Watson knowledge base stored roughly 4
terabytes of data when winning at Jeopardy)

5

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Parallelism enables processing of big data

• Continuously streaming data needs to be processed at least as fast
as it is accumulated, or we will never catch up

• The bottleneck in processing very large data sets is dominated by
the speed of disk access

• More processors accessing more disks enables faster processing

6

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

MapReduce Pattern

• Apply Map function f to user supplied record of key-
value pairs

• Compute set of intermediate key/value pairs
• Apply Reduce operation g to all values that share

same key to combine derived data properly
—Often produces smaller set of values

• User supplies Map and Reduce operations in
functional model so that the system can parallelize
them, and also re-execute them for fault tolerance

7

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

MapReduce: The Map Step

vk

k' v'

k' v'
map

vk

vk

…
k' v'

map

Input set of
key-value pairs

Flattened intermediate
set of key-value pairs

…

k' v'map

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

8

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

MapReduce: The Reduce Step

k' v'

…

k' v'

k' v'

k' v'

Intermediate
key-value pairs

group

reduce

reduce
k' v''

v''

v''

…

k' v'

…

k' v'

k' v' v'

v' v'

Key-value groups
Output
key-value pairs

k'

k'

Source: http://infolab.stanford.edu/~ullman/mining/2009/mapreduce.ppt

9

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Map Reduce: Summary

• Input set is of the form {(k1, v1), . . . (kn, vn)}, where (ki, vi)
consists of a key, ki, and a value, vi.
—Assume that the key and value objects are immutable, and

that equality comparison is well defined on all key objects.
• Map function f generates sets of intermediate key-value pairs,

f(ki,vi) = {(k1′ ,v1′),...(km′,vm′)}. The kj′ keys can be different
from ki key in the input of the map function.
—Assume that a flatten operation is performed as a post-

pass after the map operations, so as to avoid dealing with a
set of sets.

• Reduce operation groups together intermediate key-value
pairs, {(k′, vj′)} with the same k’, and generates a reduced key-
value pair, (k′,v′′), for each such k’, using reduce function g

10

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Google Uses MapReduce For …

• Web crawl: Find outgoing links from HTML documents,
aggregate by target document

• Google Search: Generating inverted index files using a
compression scheme

• Google Earth: Stitching overlapping satellite images to
remove seams and to select high-quality imagery

• Google Maps: Processing all road segments on Earth and
render map tile images that display segments

• More than 10,000 MR programs at Google in 4 years, run
100,000 MR jobs per day (2008)

11

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Map/Reduce: State of Practice

• Apache Hadoop now dominates use of the Map/Reduce
framework

• Often, hadoop map/reduce functions are no longer written
directly
—Instead, a user writes a query in a very high level language

and uses another tool to compile the query into map/reduce
functions!
– Hive (another Apache project) compiles SQL queries

into map/reduce
– Pig (yet another Apache project) compiles direct

relational algebra into map/reduce

12

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Map/Reduce: State of Practice

• Eventually, users started realizing that a much larger class of
algorithms could be expressed as an iterative sequence of map/
reduce operations
—Many machine learning algorithms fall into this category

• Tools started to emerge to enable easy expression of multiple map/
reduce operations, along with smart scheduling

• Apache Spark: General purpose functional programming over a
cluster
—Caches results of map/reduce operations in memory so they can

be used on subsequent iterations
—Tends to be 10-100 times faster than Hadoop for many

applications

13

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

MapReduce Execution

Fine granularity
tasks: many more
map tasks than
machines

2000 servers =>  
≈ 200,000 Map Tasks, ≈
5,000 Reduce tasks

Bucket sort
to get same keys
together

14

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

WordCount example
Input: set of words
Output: set of (word,count) pairs
Algorithm:
1. For each input word W, emit (W, 1) as a key-value pair (map step).
2. Group together all key-value pairs with the same key (reduce step).
3. Perform a sum reduction on all values with the same key(reduce step).

• All map operations in step 1 can execute in parallel with only local data
accesses

• Step 2 may involve a major reshuffle of data as all key-value pairs with
the same key are grouped together.

• Step 3 performs a standard reduction algorithm for all values with the
same key, and in parallel for different keys.

15

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

PseudoCode for WordCount
1. map(String input_key, String input_value):
2. // input_key: document name
3. // input_value: document contents
4. for each word w in input_value:
5. EmitIntermediate(w, "1"); // Produce count of words
6. !

7. reduce(String output_key, Iterator intermediate_values):
8. // output_key: a word
9. // intermediate_values: a list of counts
10. int result = 0;
11. for each v in intermediate_values:
12. result += ParseInt(v); // get integer from key-value
13. Emit(AsString(result));

16

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Example Execution of WordCount Program

that that is is that that is not is not is that it it is

is 1, that 2 is 1, that 2 is 2, not 2 is 2, it 2, that 1
Map 1 Map 2 Map 3 Map 4

Reduce 1 Reduce 2
is 6; it 2 not 2; that 5

Shuffle

Collect

is 6; it 2; not 2; that 5

Distribute

that 2,2,1
not 2

is 1,1,2,2
it 2

17

