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My Background
• Rice PhD, Computer Science 

• Experience in distributed computing, language design and 
implementation, web services, natural language 
processing, machine learning 

• Vice President, Engineering at Two Sigma Investments 

• Quantitative Software Engineering 

• Machine Learning 

• Distributed Computing



Course Overview

• An Introduction to Functional Programming 

• Tuesdays and Thursdays 2:30 PM - 3:45 PM 

• Office hours: Tuesdays 4 PM - 5 PM DH 2161



Course Mechanics
• Course website: https://wiki.rice.edu/confluence/

display/PARPROG/COMP311 

• Syllabus, lectures and homework assignments 
are posted there 

• Lecture topics are subject to change 

• Course mailing list: comp311@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP311
mailto:comp311@rice.edu


Online Course Discussion

• Piazza https://piazza.com/class/ibslot8j6un5p6 

• We will make a best effort to answer questions 
posted on this page in a timely manner 

• There is no SLA 

• Bring your questions to class and office hours

https://piazza.com/class/ibslot8j6un5p6


Course Overview
• No required textbook 

• We will draw from a variety of sources 

• Coursework consists entirely of weekly homework 
assignments 

• Make sure you do these! 

• Missing even one assignment will significantly 
impact your grade



Homework Assignments

• Think of the assignments in this class as short 
essays 

• Focus as much on style as you would for an essay 

• 50% of a homework grade is based on clarity and 
style 

• 50% on correctness



Homework Assignments
• There will be one week between assignment and 

due date (sometimes more) 

• No slip days, no extensions (just like the real world) 

• Aiming for roughly 10 hours of coursework per 
week 

• Block this time off now and make a priority of 
respecting it



Homework Assignments

• Assignments are published on Thursdays 

• My office hours are on Tuesdays 

• Start on assignments before the following Tuesday 
so that you have time to ask questions at class and 
at office hours



Homework Assignments

• Assignments will be programming exercises in 
Scala 

• We will cover the parts of Scala needed for the 
assignments in class



Homework Assignments

• We will use DrScala for all assignments 

• Installed on all Rice systems and available for 
download from the course website 

• We will use turnin for all assignments 

• Instructions on the course website



What is Functional 
Programming?



Early Models of 
Computation

• Turing Machines (Turing) 

• Type-0 Grammars (Chomsky) 

• The Lambda Calculus (Church) 

• … and many others
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Turing Machines

• Processor is a finite state machine that loads and stores 
memory cells 

• Turing coined the term “compute” and introduced the 
notion of storage 

• Many programs, languages, and computer architectures 
are heavily influenced by this model (and its derivates: Von 
Neumann, etc.) 

Processor Tape
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The Lambda Calculus
• A calculus consists of a set of rules for rewriting symbols 

• An attempt to rebuild all of mathematics on the notion of 
functions and applications 

• There is no mutation in the lambda calculus 

• Every program consists solely of applications of 
functions to arguments (which are also functions) 

• Applications of functions return values (which are also 
functions)



What is Functional 
Programming?

A style of programming inspired by the Lambda 
Calculus as a foundational model of computation.
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What is Functional 
Programming?

• A style of programming that avoids side effects 

• All results of a computation are sent as output

BuyCredit Card # (Digital Book, 
Charge Event)



Why Avoid Side Effects?
• Programs are easier to write: There are fewer interactions 

between program components, enabling multiple programmers (or 
a single programmer on multiple days) to work together more easily 

• Programs are easier to read: Pieces of a program can be read 
and understood in isolation 

• Programs are easier to test: Less context needs to be built up 
before calling a function to test it 

• Programs are easier to debug: Problems can be isolated more 
easily, and behavior is inherently deterministic 

• Programs are easier to reason about: The model of computation 
needed to understand a program without mutation is much simpler



Why Avoid Side Effects?
• Programs are easier to execute in parallel: 

Because separate pieces of a computation do not 
interact, it is easy to compute them on separate 
processors

• This is an increasingly important consideration in 
the era of multicore chips, big data, and 
distributing computing 

• This advantage undermines an often cited 
argument for mutation (efficiency)



What is Functional 
Programming?

• A style of programming that emphasizes functions 
as the basis of computation 

• Functions are applied to arguments 

• Functions are passed as arguments to other 
functions 

• Functions are returned as values of applications



Why Emphasize Functions?
• Functions allow us to factor out common code 

• DRY: Don’t Repeat Yourself 

• Why is this important? 

• Passing functions as arguments is often the most 
straightforward way to abide by DRY 

• Returning functions as values is also important 
for DRY



Why Emphasize Functions?

• Functions allow us to concisely package 
computations and move them from one control 
point to another 

• Aids us with implementing and reasoning about 
parallel and distributed programming (yet again)



A Word on Object-Oriented 
Programming

• There is no tension between functional and object-
oriented programming 

• In many ways, they complement one another 

• Scala was designed to integrate both styles of 
programming



A New Paradigm
• Set aside what you’ve learned about programming 

• The style we will practice might seem unfamiliar at 
first 

• Initially, the material will seem quite basic 

• We will build a solid foundation that will enable us 
to explore advanced topics



A New Paradigm

• We will re-examine many things we’ve (partially) 
learned 

• Often in life, the way forward is to rethink our 
assumptions 

• Later, we can integrate what we’ve learned into 
our larger body of knowledge



Our First Exposure to 
Computation:  

Arithmetic



4 + 5 = 9



4 + 5 ↦ 9

expressions are reduced to values



Expressions are Reduced to 
Values

• Rules for a fixed set of operators: 

• 4 + 5 ↦ 9 

• 4 - 5 ↦ -1 

• 4 × 5 ↦ 20 

• 9 / 3 ↦ 3 

• 42 ↦ 16 

• √4 ↦ 2



Expressions are Reduced to 
Values

To reduce an operator applied to expressions, first 
reduce the subexpressions, left to right: 

(4 + 1) × (5 + 3) ↦ 

5 × (5 + 3) ↦ 

5 × 8 ↦ 

40



Expressions are Reduced to 
Values

A precedence is defined on operators to help us 
decide what to reduce next: 

4 + 1 × 5 + 3 ↦ 

4 + 5 + 3 ↦ 

9 + 3 ↦ 

12



New Operations Often 
Introduce New Types of Values

• 4 + 5 ↦ 9 

• 4 - 5 ↦ -1 

• 4 × 5 ↦ 20 

• 4 / 5 ↦ 0.8 

• 42 ↦ 16 

• √-1 ↦ i



Old Operations on New Types of Values 
Often Introduce Yet More New Types of 

Values

1 + i



So, what are types?



Values Have  
Value Types

Definition: A value type is a name for a collection of 
values with common properties.



Values Have  
Value Types

• Examples of value types: 

• Natural numbers 

• Integers 

• Floating point numbers 

• And many more



Expressions Have  
Static Types

Definition (Attempt 1): A static type is an assertion 
that an expression reduces to a value with a 

particular value type.



Expressions Have  
Static Types

4 + 5: 𝐍 ↦ 9: 𝐍

Static Type Dynamic Type



Rules for Static Types
• If an expression is a value, its static type is its value type 

5: 𝐍 
• With each operator, there are “if-then” rules stating the 

required static types of the operands, and the static type 
of the application: 

Integer Addition: If the operands to + are of type N 
then the application is of type N



Expressions Have  
Static Types

Definition (Attempt 1): A static type is an assertion 
that an expression reduces to a value with a 

particular dynamic type. 

Not quite.



Expressions Have  
Static Types

16 / 20: 𝐐 ↦ 0.8: 𝐐
So far, so good…



Expressions Have  
Static Types

16 / 0: 𝐐 ↦ ?



Expressions Have  
Static Types

Definition (Attempt 2): A static type is an assertion 
that either an expression reduces to a value with a 
particular value type, or one of a well-defined set of 

exceptional events occurs.



Why Static Types?
• Using our rules, we can determine whether an 

expression has a static type 

• If it does, we say the expression is well-typed, 
and we know that proceeding with our 
computation is type safe: 

• Either our computation will finish with a value of 
the determined value type, or one of a well-
defined exceptional events will occur



What Constitutes the Set of Well-Defined 
Exceptional Events in Arithmetic?

• A “division by zero” error 

• What else?



What are the Well-Defined 
Exceptional Events in Arithmetic?

• A “division by zero” error 

• What if we run out of paper? 

• Or pencil lead? Or erasers? 

• What if we run out of time?



What Constitutes the Set of Well-Defined 
Exceptional Events in Arithmetic?

• A “division by zero” error 

• We run out of some finite resource



Our Second Exposure to 
Computation: 

Algebra



Now, We Learn How to Define Our 
Own Operators (a.k.a. functions)

f(x) = 2x + 1 

f(x, y) = x2 + y2



And We Learn How to 
Compute With Them

f(x) = 2x + 1 

f(3 + 2) ↦ 

f(5) ↦ 

(2 × 5) + 1 ↦ 

10 + 1 ↦ 

11



The Substitution Rule of 
Computation

• To reduce an application of a function to a set of 
arguments: 

• Reduce the arguments, left to right 

• Reduce the body of the function, with each 
parameter replaced by the corresponding 
argument



Using the Substitution Rule
f(x, y) = x2 + y2  

f(4 - 5, 3 + 1) ↦ 

f(-1, 3 + 1) ↦ 

f(-1, 4) ↦ 

-12 + 42 ↦ 

1 + 16 ↦ 

17



What About Types?
• Eventually, we learn that our functions need to 

include rules indicating the required types of their 
arguments, and the types of applications 

• You might have seen notation like this in a math 
class: 

f: 𝐙 → 𝐙



Typing Rules for Functions

f: 𝐙 → 𝐙 
What does this rule mean?



Typing Rules for Functions

f: 𝐙 → 𝐙 
• We can interpret the arrow as denoting data flow: 

The function f consumes arguments with value type 
𝐙 and produces values with value type 𝐙 

(or one of a well-defined set of exceptional events 
occurs).



Typing Rules for Functions

f: 𝐙 → 𝐙 
• We can also interpret the arrow as logical 

implication: 

If f is applied to an argument expression with static 
type 𝐙 then the application expression has static 

type 𝐙.



What are The Exceptional 
Events in Algebra?

• A “division by zero” error 

• We run out of some finite resource 

• What else?



The Substitution Rule Allows for 
Computations that Never Finish

f: 𝐙 × 𝐙 → 𝐙 

f(x, y) = f(x, y) 

f(4 - 5, 3 + 1) ↦ 

f(-1, 3 + 1) ↦ 

f(-1, 4) ↦ 

f(-1, 4) ↦ 

…



The Substitution Rule Allows for 
Computations that Keep Getting Larger

f: 𝐙 × 𝐙 → 𝐙 

f(x, y) = f(f(x, y), f(x, y)) 

f(4 - 5, 3 + 1) ↦ 

f(-1, 3 + 1) ↦ 

f(-1, 4) ↦ 

f(f(-1, 4), f(-1, 4)) ↦ 

f(f(f(-1, 4), f(-1, 4)), f(f(-1, 4), f(-1, 4))) ↦ 

…



But We Need at Least Limited Recursion 
to Define Common Algebraic Constructs

{ 1                  if n = 0
n(n -1)!         if n > 0n! =

!: 𝐍→𝐍



What are The Exceptional 
Events in Algebra?

• A “division by zero” error 

• We run out of some finite resource 

• The computation never stops                 
(unbounded time) 

• The computation keeps getting larger   
(unbounded space)



Our Third Exposure to 
Computation: 

Core Scala



Core Scala

• We will continue to use algebra as our model of 
computation 

• We will switch to Scala syntax 

• We will introduce new value types 



Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14

Boolean: false, true

String: “Hello, world!”



Primitive Operators on Ints 
and Doubles in Core Scala

Algebraic operators: 

e + eʹ     e - eʹ     e * eʹ     e / eʹ

• For each operator: 

• If both arguments to an application of an operator are 
of type Int then the application is of type Int 

• If both arguments to an application of an operator are 
of type Double then the application is of type Double



Primitive Operators on Ints 
and Doubles in Core Scala

Comparison operators: 

e == eʹ     e <= eʹ     e >= eʹ     

e > eʹ      e < eʹ

• For each operator: 

• If both arguments to an application of an operator are of 
type Int then the application is of type Boolean 

• If both arguments to an application of an operator are of 
type Double then the application is of type Boolean



Some Primitive Operators on 
Booleans in Core Scala

Conjunction, Disjunction:    

e & eʹ     e | eʹ    

• In both cases: 

• If both arguments to an application are of type 
Boolean then the application is of type Boolean



More Primitive Operators on 
Booleans in Core Scala

Negation:      

!e

• If the argument to an application is of type Boolean 
then the application is of type Boolean



Yet More Primitive Operators 
on Booleans in Core Scala

Conditional Expressions: 

if (e) eʹ else eʹʹ  

• If the first argument is of type Boolean and the 
second and third argument are of the same type 𝑇 
then the application is of type 𝑇



Primitive Operators on 
Strings in Core Scala

String Concatenation: 

e + eʹ  

• If both arguments are of type String then the 
application is of type String



An Example Function 
Definition in Core Scala

def square(x: Double) = x * x



Syntax for Defining 
Functions

• If there is no recursion, we do not need to declare 
the return type:

def fnName(arg0: type0, …, argk: typek):returnType = 

      expr

def fnName(arg0: type0, …, argk: typek) = 

expr



The Substitution Rule Works 
as Before

def square(x: Double) = x * x

square(2.0 * 3.0) ↦
square(6.0) ↦
6.0 * 6.0 ↦

36.0



The Nature of Ints



Fixed Size Ints

• Unlike the integers we might write on a sheet of 
paper, the values of type Int are of a fixed size 

• For every n: Int, 

-231 ≤ n ≤ 231-1



Fixing the Size of Numbers 
Has Many Benefits

• The time needed to compute the application of an 
operation on two numbers is bounded 

• The space needed to store a number is bounded 

• We can easily reuse the space used for one 
number to store another



But We Need to Concern 
Ourselves with Overflow

• If we compute a value larger than 231-1, our 
representation will “wrap around” 

2147483647 + 1 ↦ -2147483648 



The Moral of Computing with 
Ints

• If possible, determine the range of potential results 
of a computation 

• Ensure that this range is no larger than the range 
of representable values of type Int 

• Otherwise, include in your computation a check for 
overflow



The Nature of Doubles



Scientific Notation
• Numeric values in scientific computations can span 

enormous ranges, from the very large to the very 
small 

• At the same time, scientific measurements are of 
limited precision 

• “Scientific notation” was devised in order to 
efficiently represent approximate values that span a 
large range



Scientific Notation

6.022 × 1023

mantissa exponent



Scientific Notation and 
Efficient Computation

• We normalize the mantissa so that its value is at least 1 
but less than 10  

• If we 

• Set the number of digits in the mantissa to a fixed 
precision, and 

• Set the number of digits in the exponent to a fixed 
precision 

• Then all numbers in our notation are of a fixed size



Doubles

• Values of type Double are stored as with fixed sized 
numbers in scientific notation, but with a few 
differences: 

• Finite, nonzero numeric values can be expressed 
in the form: 

± m 2e



Doubles

± m 2e 

• 1 ≤ m ≤ 253-1 

• -210-53+3 ≤ e ≤ 210-53



Doubles

± m 2e 

• 1 ≤ m ≤ 253-1 

• -210-53+3 ≤ e ≤ 210-53 

• -1074 ≤ e ≤ 971


