
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

My Background
• Rice PhD, Computer Science

• Experience in distributed computing, language design and
implementation, web services, natural language
processing, machine learning

• Vice President, Engineering at Two Sigma Investments

• Quantitative Software Engineering

• Machine Learning

• Distributed Computing

Course Overview

• An Introduction to Functional Programming

• Tuesdays and Thursdays 2:30 PM - 3:45 PM

• Office hours: Tuesdays 4 PM - 5 PM DH 2161

Course Mechanics
• Course website: https://wiki.rice.edu/confluence/

display/PARPROG/COMP311

• Syllabus, lectures and homework assignments
are posted there

• Lecture topics are subject to change

• Course mailing list: comp311@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP311
mailto:comp311@rice.edu

Online Course Discussion

• Piazza https://piazza.com/class/ibslot8j6un5p6

• We will make a best effort to answer questions
posted on this page in a timely manner

• There is no SLA

• Bring your questions to class and office hours

https://piazza.com/class/ibslot8j6un5p6

Course Overview
• No required textbook

• We will draw from a variety of sources

• Coursework consists entirely of weekly homework
assignments

• Make sure you do these!

• Missing even one assignment will significantly
impact your grade

Homework Assignments

• Think of the assignments in this class as short
essays

• Focus as much on style as you would for an essay

• 50% of a homework grade is based on clarity and
style

• 50% on correctness

Homework Assignments
• There will be one week between assignment and

due date (sometimes more)

• No slip days, no extensions (just like the real world)

• Aiming for roughly 10 hours of coursework per
week

• Block this time off now and make a priority of
respecting it

Homework Assignments

• Assignments are published on Thursdays

• My office hours are on Tuesdays

• Start on assignments before the following Tuesday
so that you have time to ask questions at class and
at office hours

Homework Assignments

• Assignments will be programming exercises in
Scala

• We will cover the parts of Scala needed for the
assignments in class

Homework Assignments

• We will use DrScala for all assignments

• Installed on all Rice systems and available for
download from the course website

• We will use turnin for all assignments

• Instructions on the course website

What is Functional
Programming?

Early Models of
Computation

• Turing Machines (Turing)

• Type-0 Grammars (Chomsky)

• The Lambda Calculus (Church)

• … and many others

Early Models of
Computation

• Turing Machines (Turing)

• Type-0 Grammars (Chomsky)

• The Lambda Calculus (Church)

• … and many others

• To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power

• Suggests there is a deeper structure to the nature of
computation

Early Models of
Computation

• Turing Machines (Turing)

• Type-0 Grammars (Chomsky)

• The Lambda Calculus (Church)

• … and many others

• To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power

• Suggests there is a deeper structure to the nature of
computation

Turing Machines

• Processor is a finite state machine that loads and stores
memory cells

• Turing coined the term “compute” and introduced the
notion of storage

• Many programs, languages, and computer architectures
are heavily influenced by this model (and its derivates: Von
Neumann, etc.)

Processor Tape

Early Models of
Computation

• Turing Machines (Turing)

• Type-0 Grammars (Chomsky)

• The Lambda Calculus (Church)

• … and many others

• To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power

• Suggests there is a deeper structure to the nature of
computation

The Lambda Calculus
• A calculus consists of a set of rules for rewriting symbols

• An attempt to rebuild all of mathematics on the notion of
functions and applications

• There is no mutation in the lambda calculus

• Every program consists solely of applications of
functions to arguments (which are also functions)

• Applications of functions return values (which are also
functions)

What is Functional
Programming?

A style of programming inspired by the Lambda
Calculus as a foundational model of computation.

What is Functional
Programming?

• A style of programming that avoids side effects

BuyCredit Card # Digital Book

Card Charged

What is Functional
Programming?

• A style of programming that avoids side effects

BuyCredit Card # Digital Book

Card Charged Side Effect

What is Functional
Programming?

• A style of programming that avoids side effects

• All results of a computation are sent as output

BuyCredit Card # (Digital Book,
Charge Event)

Why Avoid Side Effects?
• Programs are easier to write: There are fewer interactions

between program components, enabling multiple programmers (or
a single programmer on multiple days) to work together more easily

• Programs are easier to read: Pieces of a program can be read
and understood in isolation

• Programs are easier to test: Less context needs to be built up
before calling a function to test it

• Programs are easier to debug: Problems can be isolated more
easily, and behavior is inherently deterministic

• Programs are easier to reason about: The model of computation
needed to understand a program without mutation is much simpler

Why Avoid Side Effects?
• Programs are easier to execute in parallel:

Because separate pieces of a computation do not
interact, it is easy to compute them on separate
processors

• This is an increasingly important consideration in
the era of multicore chips, big data, and
distributing computing

• This advantage undermines an often cited
argument for mutation (efficiency)

What is Functional
Programming?

• A style of programming that emphasizes functions
as the basis of computation

• Functions are applied to arguments

• Functions are passed as arguments to other
functions

• Functions are returned as values of applications

Why Emphasize Functions?
• Functions allow us to factor out common code

• DRY: Don’t Repeat Yourself

• Why is this important?

• Passing functions as arguments is often the most
straightforward way to abide by DRY

• Returning functions as values is also important
for DRY

Why Emphasize Functions?

• Functions allow us to concisely package
computations and move them from one control
point to another

• Aids us with implementing and reasoning about
parallel and distributed programming (yet again)

A Word on Object-Oriented
Programming

• There is no tension between functional and object-
oriented programming

• In many ways, they complement one another

• Scala was designed to integrate both styles of
programming

A New Paradigm
• Set aside what you’ve learned about programming

• The style we will practice might seem unfamiliar at
first

• Initially, the material will seem quite basic

• We will build a solid foundation that will enable us
to explore advanced topics

A New Paradigm

• We will re-examine many things we’ve (partially)
learned

• Often in life, the way forward is to rethink our
assumptions

• Later, we can integrate what we’ve learned into
our larger body of knowledge

Our First Exposure to
Computation:

Arithmetic

4 + 5 = 9

4 + 5 ↦ 9

expressions are reduced to values

Expressions are Reduced to
Values

• Rules for a fixed set of operators:

• 4 + 5 ↦ 9

• 4 - 5 ↦ -1

• 4 × 5 ↦ 20

• 9 / 3 ↦ 3

• 42 ↦ 16

• √4 ↦ 2

Expressions are Reduced to
Values

To reduce an operator applied to expressions, first
reduce the subexpressions, left to right:

(4 + 1) × (5 + 3) ↦

5 × (5 + 3) ↦

5 × 8 ↦

40

Expressions are Reduced to
Values

A precedence is defined on operators to help us
decide what to reduce next:

4 + 1 × 5 + 3 ↦

4 + 5 + 3 ↦

9 + 3 ↦

12

New Operations Often
Introduce New Types of Values

• 4 + 5 ↦ 9

• 4 - 5 ↦ -1

• 4 × 5 ↦ 20

• 4 / 5 ↦ 0.8

• 42 ↦ 16

• √-1 ↦ i

Old Operations on New Types of Values
Often Introduce Yet More New Types of

Values

1 + i

So, what are types?

Values Have
Value Types

Definition: A value type is a name for a collection of
values with common properties.

Values Have
Value Types

• Examples of value types:

• Natural numbers

• Integers

• Floating point numbers

• And many more

Expressions Have
Static Types

Definition (Attempt 1): A static type is an assertion
that an expression reduces to a value with a

particular value type.

Expressions Have
Static Types

4 + 5: 𝐍 ↦ 9: 𝐍

Static Type Dynamic Type

Rules for Static Types
• If an expression is a value, its static type is its value type

5: 𝐍
• With each operator, there are “if-then” rules stating the

required static types of the operands, and the static type
of the application:

Integer Addition: If the operands to + are of type N
then the application is of type N

Expressions Have
Static Types

Definition (Attempt 1): A static type is an assertion
that an expression reduces to a value with a

particular dynamic type.

Not quite.

Expressions Have
Static Types

16 / 20: 𝐐 ↦ 0.8: 𝐐
So far, so good…

Expressions Have
Static Types

16 / 0: 𝐐 ↦ ?

Expressions Have
Static Types

Definition (Attempt 2): A static type is an assertion
that either an expression reduces to a value with a
particular value type, or one of a well-defined set of

exceptional events occurs.

Why Static Types?
• Using our rules, we can determine whether an

expression has a static type

• If it does, we say the expression is well-typed,
and we know that proceeding with our
computation is type safe:

• Either our computation will finish with a value of
the determined value type, or one of a well-
defined exceptional events will occur

What Constitutes the Set of Well-Defined
Exceptional Events in Arithmetic?

• A “division by zero” error

• What else?

What are the Well-Defined
Exceptional Events in Arithmetic?

• A “division by zero” error

• What if we run out of paper?

• Or pencil lead? Or erasers?

• What if we run out of time?

What Constitutes the Set of Well-Defined
Exceptional Events in Arithmetic?

• A “division by zero” error

• We run out of some finite resource

Our Second Exposure to
Computation:

Algebra

Now, We Learn How to Define Our
Own Operators (a.k.a. functions)

f(x) = 2x + 1

f(x, y) = x2 + y2

And We Learn How to
Compute With Them

f(x) = 2x + 1

f(3 + 2) ↦

f(5) ↦

(2 × 5) + 1 ↦

10 + 1 ↦

11

The Substitution Rule of
Computation

• To reduce an application of a function to a set of
arguments:

• Reduce the arguments, left to right

• Reduce the body of the function, with each
parameter replaced by the corresponding
argument

Using the Substitution Rule
f(x, y) = x2 + y2

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

-12 + 42 ↦

1 + 16 ↦

17

What About Types?
• Eventually, we learn that our functions need to

include rules indicating the required types of their
arguments, and the types of applications

• You might have seen notation like this in a math
class:

f: 𝐙 → 𝐙

Typing Rules for Functions

f: 𝐙 → 𝐙
What does this rule mean?

Typing Rules for Functions

f: 𝐙 → 𝐙
• We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type
𝐙 and produces values with value type 𝐙

(or one of a well-defined set of exceptional events
occurs).

Typing Rules for Functions

f: 𝐙 → 𝐙
• We can also interpret the arrow as logical

implication:

If f is applied to an argument expression with static
type 𝐙 then the application expression has static

type 𝐙.

What are The Exceptional
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• What else?

The Substitution Rule Allows for
Computations that Never Finish

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(x, y)

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(-1, 4) ↦

…

The Substitution Rule Allows for
Computations that Keep Getting Larger

f: 𝐙 × 𝐙 → 𝐙

f(x, y) = f(f(x, y), f(x, y))

f(4 - 5, 3 + 1) ↦

f(-1, 3 + 1) ↦

f(-1, 4) ↦

f(f(-1, 4), f(-1, 4)) ↦

f(f(f(-1, 4), f(-1, 4)), f(f(-1, 4), f(-1, 4))) ↦

…

But We Need at Least Limited Recursion
to Define Common Algebraic Constructs

{ 1 if n = 0
n(n -1)! if n > 0n! =

!: 𝐍→𝐍

What are The Exceptional
Events in Algebra?

• A “division by zero” error

• We run out of some finite resource

• The computation never stops
(unbounded time)

• The computation keeps getting larger
(unbounded space)

Our Third Exposure to
Computation:

Core Scala

Core Scala

• We will continue to use algebra as our model of
computation

• We will switch to Scala syntax

• We will introduce new value types

Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3

Double: 1.414, 2.718, 3.14

Boolean: false, true

String: “Hello, world!”

Primitive Operators on Ints
and Doubles in Core Scala

Algebraic operators:

e + eʹ e - eʹ e * eʹ e / eʹ

• For each operator:

• If both arguments to an application of an operator are
of type Int then the application is of type Int

• If both arguments to an application of an operator are
of type Double then the application is of type Double

Primitive Operators on Ints
and Doubles in Core Scala

Comparison operators:

e == eʹ e <= eʹ e >= eʹ

e > eʹ e < eʹ

• For each operator:

• If both arguments to an application of an operator are of
type Int then the application is of type Boolean

• If both arguments to an application of an operator are of
type Double then the application is of type Boolean

Some Primitive Operators on
Booleans in Core Scala

Conjunction, Disjunction:

e & eʹ e | eʹ

• In both cases:

• If both arguments to an application are of type
Boolean then the application is of type Boolean

More Primitive Operators on
Booleans in Core Scala

Negation:

!e

• If the argument to an application is of type Boolean
then the application is of type Boolean

Yet More Primitive Operators
on Booleans in Core Scala

Conditional Expressions:

if (e) eʹ else eʹʹ

• If the first argument is of type Boolean and the
second and third argument are of the same type 𝑇
then the application is of type 𝑇

Primitive Operators on
Strings in Core Scala

String Concatenation:

e + eʹ

• If both arguments are of type String then the
application is of type String

An Example Function
Definition in Core Scala

def square(x: Double) = x * x

Syntax for Defining
Functions

• If there is no recursion, we do not need to declare
the return type:

def fnName(arg0: type0, …, argk: typek):returnType =

 expr

def fnName(arg0: type0, …, argk: typek) =

expr

The Substitution Rule Works
as Before

def square(x: Double) = x * x

square(2.0 * 3.0) ↦
square(6.0) ↦
6.0 * 6.0 ↦

36.0

The Nature of Ints

Fixed Size Ints

• Unlike the integers we might write on a sheet of
paper, the values of type Int are of a fixed size

• For every n: Int,

-231 ≤ n ≤ 231-1

Fixing the Size of Numbers
Has Many Benefits

• The time needed to compute the application of an
operation on two numbers is bounded

• The space needed to store a number is bounded

• We can easily reuse the space used for one
number to store another

But We Need to Concern
Ourselves with Overflow

• If we compute a value larger than 231-1, our
representation will “wrap around”

2147483647 + 1 ↦ -2147483648

The Moral of Computing with
Ints

• If possible, determine the range of potential results
of a computation

• Ensure that this range is no larger than the range
of representable values of type Int

• Otherwise, include in your computation a check for
overflow

The Nature of Doubles

Scientific Notation
• Numeric values in scientific computations can span

enormous ranges, from the very large to the very
small

• At the same time, scientific measurements are of
limited precision

• “Scientific notation” was devised in order to
efficiently represent approximate values that span a
large range

Scientific Notation

6.022 × 1023

mantissa exponent

Scientific Notation and
Efficient Computation

• We normalize the mantissa so that its value is at least 1
but less than 10

• If we

• Set the number of digits in the mantissa to a fixed
precision, and

• Set the number of digits in the exponent to a fixed
precision

• Then all numbers in our notation are of a fixed size

Doubles

• Values of type Double are stored as with fixed sized
numbers in scientific notation, but with a few
differences:

• Finite, nonzero numeric values can be expressed
in the form:

± m 2e

Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

Doubles

± m 2e

• 1 ≤ m ≤ 253-1

• -210-53+3 ≤ e ≤ 210-53

• -1074 ≤ e ≤ 971

