Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC



My Background

* Rice PhD, Computer Science

 EXperience in distributed computing, language design and
implementation, web services, natural language
processing, machine learning

* Vice President, Engineering at Two Sigma Investments
* Quantitative Software Engineering

 Machine Learning

* Distributed Computing



Course Overview

* An Introduction to Functional Programming
 Juesdays and Thursdays 2:30 PM - 3:45 PM

e Office hours: Tuesdays 4 PM - 5 PM DH 2161



Course Mechanics

* Course website: https://wiki.rice.edu/confluence/
display/PARPROG/COMP311

e Syllabus, lectures and homework assignments
are posted there

* | ecture topics are subject to change

e Course mailing list: comp311@rice.edu



https://wiki.rice.edu/confluence/display/PARPROG/COMP311
mailto:comp311@rice.edu

Online Course Discussion

» Piazza https://piazza.com/class/ibslot8i6un5p6

 We will make a best effort to answer guestions
posted on this page in a timely manner

e Thereisno SLA

e Bring your questions to class and office hours


https://piazza.com/class/ibslot8j6un5p6

Course Overview

* No required textbook
 We will draw from a variety of sources

* Coursework consists entirely of weekly homework
assignments

 Make sure you do these!

* Missing even one assignment will significantly
impact your grade



Homework Assignments

* Think of the assignments in this class as short
essays

 Focus as much on style as you would for an essay

 50% of a homework grade is based on clarity and
style

e 50% on correctness



Homework Assignments

* There will be one week between assignment and
due date (sometimes more)

* No slip days, no extensions (just like the real world)

* Aiming for roughly 10 hours of coursework per
week

Block this time off now and make a priority of
respecting it



Homework Assignments

* Assignments are published on Thursdays
* My office hours are on Tuesdays
e Start on assignments before the following Tuesday

so that you have time to ask questions at class and
at office hours



Homework Assignments

e Assignments will be programming exercises in
Scala

 We will cover the parts of Scala needed for the
assignments in class



Homework Assignments

* We will use DrScala tor all assignments

* |nstalled on all Rice systems and available tor
download from the course website

* We will use turnin for all assignments

e |nstructions on the course website



What Is Functional
Programming’?



Early Models of
Computation

* Turing Machines (Turing)
e Type-0 Grammars (Chomsky)

 The Lambda Calculus (Church)

e ... and many others



Early Models of
Computation

Turing Machines (Turing)
Type-0 Grammars (Chomsky)
The Lambda Calculus (Church)
... and many others

To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power

e Suggests there is a deeper structure to the nature of
computation



Early Models of
Computation

-+ Turing Machines (Turing)
Type-0 Grammars (Chomsky)
The Lambda Calculus (Church)
... and many others

To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power

e Suggests there is a deeper structure to the nature of
computation



Turing Machines

Processor > Tape

e Processor is a finite state machine that loads and stores
memory cells

e Juring coined the term "compute” and introduced the
notion of storage

 Many programs, languages, and computer architectures
are heavily influenced by this model (and its derivates: Von
Neumann, etc.)



Early Models of
Computation

Turing Machines (Turing)

Type-0 Grammars (Chomsky)

- The Lambda Calculus (Church)
... and many others

To the surprise of their inventors, all of these systems
turned out to be equivalent in expressive power

e Suggests there is a deeper structure to the nature of
computation



The Lambda Calculus

A calculus consists of a set of rules tfor rewriting symbols

An attempt to rebuild all of mathematics on the notion of
functions and applications

There Is no mutation in the lambda calculus

Every program consists solely of applications of
functions to arguments (which are also functions)

Applications of functions return values (which are also
functions)



What Is Functional
Programming’?

A style of programming inspired by the Lambda
Calculus as a foundational model of computation.



What Is Functional
Programming’?

e A style of programming that avoids side eftects

Credit Card # m > Digital Book

Card Charged




What Is Functional
Programming’?

e A style of programming that avoids side eftects

Credit Card # > > Digital Book
@Ch@ Side Effect




What Is Functional
Programming’?

e A style of programming that avoids side eftects

Credit Card # >

» All results of a computation are sent as output

_(Digital Book,
Charge Event)




Why Avoid Side Effects”

 Programs are easier to write: There are fewer interactions
between program components, enabling multiple programmers (or
a single programmer on multiple days) to work together more easily

 Programs are easier to read: Pieces of a program can be read
and understood in isolation

 Programs are easier to test: L ess context needs to be built up
before calling a function to test it

 Programs are easier to debug: Problems can be isolated more
easily, and behavior is inherently deterministic

 Programs are easier to reason about: The model of computation
needed to understand a program without mutation is much simpler



Why Avoid Side Effects”

- Programs are easier to execute in parallel:
Because separate pieces of a computation do not
interact, it Is easy to compute them on separate
DroCessors

- This Is an increasingly important consideration in
the era of multicore chips, big data, and
distributing computing

This advantage undermines an often cited
argument for mutation (efficiency)



What Is Functional
Programming’?

- A style of programming that emphasizes functions
as the basis of computation

-+ Functions are applied to arguments

+ Functions are passed as arguments to other
functions

- Functions are returned as values of applications



Why Emphasize Functions®

e Functions allow us to factor out common code
 DRY: Don't Repeat Yourselt
 Why is this important?

* Passing functions as arguments is often the most
straightforward way to abide by DRY

* Returning functions as values is also important
for DRY



Why Emphasize Functions®

* Functions allow us to concisely package
computations and move them from one control
point to another

e Aids us with implementing and reasoning about
parallel and distributed programming (yet again)



A Word on Object-Oriented
Programming

* There is no tension between functional and object-
oriented programming

* |n many ways, they complement one another

e Scala was designed to integrate both styles of
programming



A New Paradigm

e Set aside what you've learned about programming

* The style we will practice might seem untamiliar at
first

* |nitially, the material will seem quite basic

 \We will build a solid ftoundation that will enable us
to explore advanced topics



A New Paradigm

* We will re-examine many things we've (partially)
learned

* Often in life, the way forward is to rethink our
assumptions

e |Later, we can integrate what we've learned into
our larger body of knowledge



Qur First Exposure to
Computation:

Arithmetic



4 +5=09



4 +5-9

expressions are reduced to values



EXpressions are Reduced to
Values

* Rules for a fixed set of operators:
* 4 +5-9

* 4-50 -1

* 4 x5~ 20

* 9/3+»3

¢ 42 16

¢ V4 2



EXpressions are Reduced to
Values

To reduce an operator applied to expressions, first
reduce the subexpressions, left to right:

(4+1)x(b+3)~
5x(b+3)~
5x 8w

40



EXpressions are Reduced to
Values

A precedence iIs defined on operators to help us
decide what to reduce next:

4+1x5+3w
4+5+4+3m

9+3m~

12



New Operations Often

Introduce New Types of Values
* 4+5»9

* 4-5w -1
* 4 x5~ 20
* 4/5~0.8
* 42 16

o V-1



Old Operations on New Types of Values
Often Introduce Yet More New Types of
Values

1 + |



SO, what are types”?



Values Have
Value Types

Definition: A value type is a name tor a collection of
values with common properties.



Values Have
Value Types

 Examples of value types:
 Natural numbers
* |Integers
* Floating point numbers

 And many more



EXpressions Have
Static Types

Definition (Attempt 1): A static type is an assertion
that an expression reduces to a value with a
particular value type.



EXpressions Have
Static Types

4 +5 N9 N

o

Static Type Dynamic Type



Rules for Static Types

e |f an expression is a value, its static type is its value type

* With each operator, there are “it-then” rules stating the
required static types of the operands, and the static type
of the application:

Integer Addition: If the operands to + are of type N
then the application is of type N



EXpressions Have
Static Types

Definition (Attempt 1): A static type is an assertion
that an expression reduces to a value with a
particular dynamic type.

Not quite.



EXpressions Have
Static Types

16/20:Q+~0.8:Q

So far, so good...



EXpressions Have
Static Types

16/0: Qw7



EXpressions Have
Static Types

Definition (Attempt 2): A static type is an assertion

that either an expression reduces to a value with a

particular value type, or one of a well-detined set of
exceptional events occurs.




Why Static Types”

 Using our rules, we can determine whether an
expression has a static type

e |f it does, we say the expression is well-typed,
and we know that proceeding with our
computation is type safe:

* Either our computation will finish with a value of

the determined value type, or one of a well-
defined exceptional events will occur



What Constitutes the Set of Well-Defined
Exceptional Events in Arithmetic?

e A “division by zero” error

e \What else”



What are the Well-Defined
Exceptional Events in Arithmetic?

* A “division by zero” error
 What if we run out of paper?
 Or pencil lead? Or erasers?

e \What if we run out of time”?



What Constitutes the Set of Well-Defined
Exceptional Events in Arithmetic?

e A “division by zero” error

e \We run out of some finite resource



Our Second Exposure to
Computation:

Algebra



Now, We Learn How to Define Our
Own Operators (a.k.a. functions)

f(X) = 2X + 1

f(X, y) = X2+ y?



And We Learn How to
Compute With Them

f(xX) = 2X + 1

f(3+2) -



The Substitution Rule of
Computation

* Jo reduce an application of a function to a set of
arguments:

* Reduce the arguments, left to right
 Reduce the body of the function, with each

parameter replaced by the corresponding
argument



Using the Substitution Rule

f(x, y) = X + y?

f(4-53+1)-

f-1,3+ 1)~
f(-1, 4) »
124+ 4%
1+ 10+~

17



What About Types?

* Eventually, we learn that our functions need to
include rules indicating the required types of their
arguments, and the types of applications

* You might have seen notation like this in a math
class:

f: 1 — 7



Typing Rules for Functions

f: 1 — 7

What does this rule mean?



Typing Rules for Functions

f: 4. = 7

 We can interpret the arrow as denoting data flow:

The function f consumes arguments with value type
Z. and produces values with value type Z.

(or one of a well-defined set of exceptional events
occurs).



Typing Rules for Functions

f: 4. = 71

 We can also interpret the arrow as logical
implication:

[ffis applied to an argument expression with static
type Z. then the application expression has static

tyoe Z..



What are Ihe Exceptional
Events in Algebra”

* A “division by zero” error

e \We run out of some finite resource

e \What else”



The Substitution Rule Allows for
Computations that Never Finish

4 X1 — L

(X, y) =X, y)

f(4-5,3+ 1)|—>
f(-1,3+ 1)~
f(-1, 4) o

f(-1,4) —



The Substitution Rule Allows for
Computations that Keep Getting Larger

1 xZ1 7L

f(x, y) = 1(i(x, y), 1(x, y))

f(4-5,3+1)|—>

f(-1,8+ 1) o
f(-1, 4) -
f(f(-1, 4), f(-1, 4)) =

f(f(f(-1, 4), f(-1, 4)), f(f(-1, 4), f(-1, 4))) »



But We Need at Least Limited Recursion
to Define Common Algebraic Constructs

- N—>N

. 1 tn=>0
=Y nn-1y ifnso0



What are Ihe Exceptional
Events in Algebra”

A “division by zero” error
We run out of some finite resource

The computation never stops
(unbounded time)

The computation keeps getting larger
(unbounded space)



Our Third Exposure to
Computation:

Core Scala



Core Scala

 We will continue to use algebra as our model of
computation

* We will switch to Scala syntax

 We will introduce new value types



Value Types in Core Scala

Int: -3, -2, -1, 0, 1, 2, 3
Double: 1.414, 2.718, 3.14

Boolean: false, true

String: “Hello, world!”



Primitive Operators on Ints
and Doubles in Core Scala

Algebraic operators:

/

e + e e - e
* For each operator:

* |t both arguments to an application of an operator are
of type Int then the application is of type Int

* |f both arguments to an application of an operator are
of type Double then the application is of type Double



Primitive Operators on Ints
and Doubles in Core Scala

Comparison operators:
e == e’ e <= e
e > e

* [or each operator:

e |t both arguments to an application of an operator are of
type Int then the application is of type Boolean

e |t both arguments to an application of an operator are of
type Double then the application is of type Boolean



Some Primitive Operators on
Booleans in Core Scala

Conjunction, Disjunction:
e & e’ e | e’

e [n both cases:

* |f both arguments to an application are of type
Boolean then the application is of type Boolean



More Primitive Operators on
Booleans in Core Scala

Negation:
le

e |f the argument to an application is of type Boolean
then the application is of type Boolean



Yet More Primitive Operators
on Booleans in Core Scala

Conditional Expressions:
1f (e) e’ else e’’

* |t the first argument is of type Boolean and the
second and third argument are of the same type T

then the application is of type T




Primitive Operators on
Strings in Core Scala

String Concatenation:

e + e’

e |f both arguments are of type String then the
application is of type String



An Example Function
Definition in Core Scala

def square(x: Double) = x * x



Syntax for Defining
FuNctions

def fnName(arg@: type@, .., argk: typek):returnType

expr

e |fthere IS no recursion, we do not need to declare
the return type:

def fnName(arg@: type@, .., argk: typek) =

expr



The Substitution Rule Works
as Before

def square(x: Double) = x * x

square(2.0 * 3.0) -
square(6.0) ~
6.0 * 6.0 »
36.0



The Nature of Ints



Fixed Size Ints

* Unlike the integers we might write on a sheet of
paper, the values of type Int are of a fixed size

* For every n: Int,

-231 < n < 231-1



Fixing the Size of Numbers
Has Many Benefits

* [The time needed to compute the application of an
operation on two numbers is bounded

* [The space needed to store a number is bounded

 We can easily reuse the space used for one
number to store another



But We Need to Concern
Ourselves with Overflow

e |t we compute a value larger than 231-1, our

representation will “wrap around”

21474830647 + 1 » -2147483648



The Moral of Computing with
INtS

* |t possible, determine the range of potential results
of a computation

* Ensure that this range is no larger than the range
of representable values of type Int

* Otherwise, include in your computation a check for
overflow



The Nature of Doubles



Scientific Notation

 Numeric values in scientific computations can span
enormous ranges, from the very large to the very

small

e At the same time, scientific measurements are of
limited precision

e “Scientific notation” was devised in order to
efficiently represent approximate values that span a

large range



Scientific Notation

6.022 x 1023

/

mantissa exponent



Scientific Notation and
Efficient Computation

e \We normalize the mantissa so that its value Is at least 1
but less than 10

e |fwe

e Set the number of digits in the mantissa to a fixed
precision, and

e Set the number of digits in the exponent to a fixed
precision

e Then all numbers in our notation are of a fixed size



Doubles

* Values of type Double are stored as with fixed sized
numbers in scientific notation, but with a few
differences:

* Finite, nonzero numeric values can be expressed
in the form:

+ m 2°



Doubles

+ m 2€
1<m < 25-1

-210-53+3 < e < 270-53



Doubles

+ m 2€
1<m < 25-1
-210.53+3 < e < 270_53

-1074 < e < 971



