
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Some Language Features
You Might Find Useful for

The Homework

Requires Clauses on Class
Constructors

case class Name(field1: Type1, …, fieldN: TypeN)
 require (boolean-expression)

• Checked on every constructor call

• Because case class instances are immutable, these
ensures the property holds for the lifetime of an instance

Equals on Case Classes

• The equals method on a case class instance
checks for structural equality with its argument:

Rational(4,6).equals(Rational(4,6)) ↦

true

Equals on Case Classes

• Note that equals is a binary method, and so we can
also write this expression as:

Rational(4,6) equals Rational(4,6) ↦

true

Equals on Case Classes

• Of course, the built in equals method does not
check for mathematical equality:

Rational(4,6) equals Rational(2,3) ↦

false

Equals on Case Classes

• Why is this definition of equality acceptable on
case classes?

• What other definition is available to us?

Rational(4,6) equals Rational(2,3) ↦

false

Short-Circuiting And and Or
Operators

• Just as we have defined a short-circuiting if-then-
else operator, we can define short-circuiting and/or
operators:

&& ||

• How do we define the static and dynamic
semantics of these operators?

• When are they useful?

Calling and Defining Parameterless
Methods Without Parentheses

def toString() = { … }

vs.

def toString = { … }

Calling and Defining Parameterless
Methods Without Parentheses

Rational(4,6).toString()

vs.

Rational(4,6).toString

The Uniform Access
Principle

• Client code should not be affected by whether an
attribute is defined as a field or a method

• Only applies to immutable methods

• Can be strange even for some immutable
methods (consider reduce)

Block Expressions
• The syntactic form

• is also an expression.

• Evaluate and remove top to bottom until the last expression

• Reduce to the value of the last expression

{e1
…

 eN}

Block Expressions
• The syntactic form

• is also an expression.

• Evaluate and remove top to bottom until the last expression

• Reduce to the value of the last expression

{ 1 == 1
 2 == 3
 1 + 2 }

Block Expressions
• The syntactic form

• is also an expression.

• Evaluate and remove top to bottom until the last expression

• Reduce to the value of the last expression

{ true
 2 == 3
 1 + 2 }

Block Expressions
• The syntactic form

• is also an expression.

• Evaluate and remove top to bottom until the last expression

• Reduce to the value of the last expression

{ 2 == 3
 1 + 2 }

Block Expressions
• The syntactic form

• is also an expression.

• Evaluate and remove top to bottom until the last expression

• Reduce to the value of the last expression

{ false
 1 + 2 }

Block Expressions
• The syntactic form

• is also an expression.

• Evaluate and remove top to bottom until the last expression

• Reduce to the value of the last expression

{ 1 + 2 }

Block Expressions
• The syntactic form

• is also an expression.

• Evaluate and remove top to bottom until the last expression

• Reduce to the value of the last expression

{ 3 }

Block Expressions
• The syntactic form

• is also an expression.

• Evaluate and remove top to bottom until the last expression

• Reduce to the value of the last expression

 3

Block Expressions
• The syntactic form

• is also an expression.

• Evaluate and remove top to bottom until the last expression

• Reduce to the value of the last expression

 {
 e1
 …
 eN
}

Block Expressions
• The syntactic form

• is also an expression.

• Evaluate and remove top to bottom until the last expression

• Reduce to the value of the last expression

{e1;…;eN}

Val Expressions

The syntactic form

val x = e

is also an expression with static type Unit

Val Expressions
To reduce

val x = e

in a block expression:

Reduce e to value v

Remove the binding expression and replace all free
occurrences of x in the remainder of the block
expression with v

Otherwise, Please Restrict Your
Homework Submission to Features

Covered in Class

• These should be the only import statements in your
program:

import junit.framework.TestCase

import junit.framework.Assert._

Abstract Datatypes

Abstract Datatypes
• Often, we wish to abstract over a collection of

compound datatypes that share common
properties

• For example, we might wish to define an abstract
datatype for shapes, with separate case classes for
each of several shapes

• For this purpose, we define an abstract class and
use subclassing

Abstract Datatypes

abstract class Shape
case class Circle(radius: Double) extends Shape
case class Square(side: Double) extends Shape
case class Rectangle(height: Double, width: Double) extends Shape

Recall Our Design Recipe
• Analysis: What are the objects in the problem domain? What

data types we will use to represent them?

• Contract: What is name of our functions and their parameters?
What are the requirements of the data they consume and
produce? What is the meaning of what our program computes?

• Repeat until we are confident in our program’s correctness

• Write some tests

• Sketch a function template

• Define the function

Recall Our Design Recipe
• Analysis: This is the stage where we would discover we wish to

model our problem domain with functions over an abstract
datatype

• Contract: What contract holds for each function? Do additional
constraints and assurances hold for specific subclasses?

• Repeat until we are confident in our program’s correctness

• Write some tests: Same as before

• Sketch a function template: This needs re-examination

• Define the function

The Design Recipe for
Abstract Datatypes

• Our Function Template for computing with abstract
datatypes depends on answering the following
questions:

• Do I expect to eventually add more subclasses?

• Do I expect to eventually add more functions?

Case 1
We Expect Few New Functions

But Many New Variants

Case 1: We Expect Few New
Functions But Many New Variants

• This is a case that object-oriented programming handles well

• Classic example domains: GUI Programming, Productivity
Apps, Graphics, Games

• Declare an abstract method in our superclass and provide a
concrete definition for each sub-class

a.k.a.,

The Union Pattern (for the datatype definitions)

The Template Method Pattern (for the function definitions)

Abstract Datatypes

abstract class Shape {
 def area(): Double
}

case class Circle(radius: Double) extends Shape {
 val pi = 3.14

 def area() = pi * radius * radius

}

Abstract Datatypes

case class Square(side: Double) extends Shape {

 def area() = side * side

}

Abstract Datatypes

case class Rectangle(length: Double, width: Double)
extends Shape {

 def area() = length * width

}

Abstract Datatypes

How Do Abstract Classes Affect
Our Type Checking Rules?

• When type checking a class definition, ensure that
all abstract methods declared in the superclass are
actually defined, with compatible method types

• When type checking a collection of class
definitions, ensure that there are no cycles in the
class hierarchy!

How Do Abstract Classes Affect
Our Type Checking Rules?

• If a method is called on a receiver whose static
type is an abstract class, extract an arrow type
from the declaration (just as with a definition in a
concrete class)

expr.area() ↦

Shape.area() ↦

() ! Double

Type Checking Arguments
to a Method Call

• The static types of an argument might no longer be
an exact match:

(Let us set aside the concrete definitions of
makeLikeMe for awhile)

abstract class Shape {
 def area(): Double

 def makeLikeMe(that: Shape): Shape
}

Now Consider a Call to
Matcher With Concrete Types

Circle(1).makeLikeMe(Circle(2)) ⇒

Circle.makeLikeMe(Circle) ⇒

(Shape ! Shape)(Circle)

And now we are stuck…

Recall The Substitution
Model of Type Checking

• To type check the application of a function to
arguments:

• Reduce the function to an arrow type

• Reduce the arguments, left to right, to static
types

• If the argument types match the corresponding
parameter types, reduce the application to the
return type

Subtyping
• We need to widen our definition of matching a type to

include subtyping:

• A class is a subtype of the class it extends

• Subtyping is Reflexive:

A <: A

• Subtyping is Transitive:

If A <: B and B <: C then A <: C

Subtyping

• All types are a subtype of type Any

• Type Nothing is a subtype of all types

• There is no value with value type Nothing

Recall The Substitution
Model of Type Checking

• To type check the application of a function to
arguments:

• Reduce the function to an arrow type

• Reduce the arguments, left to right, to static
types

• If the argument types are subtypes of the
corresponding parameter types, reduce the
application to the return type

Applying a Class Method
Revisited

• To reduce the application of a method:

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right

• Reduce the body of m, replacing constructor
parameters with constructor arguments and
method parameters with method arguments

Applying a Class Method
Revisited

• To reduce the application of a method:

C(v1, …, vk).m(arg1, …, argN)

• Reduce the receiver and arguments, left to right

• Find the body of m in C and reduce to that,
replacing constructor parameters with
constructor arguments and method parameters
with method arguments

The Body of m

• To find the body of method m in type C:

• Find the definition of m in the body of C, if it exists

• Otherwise, find the body of m in the immediate
superclass of C

Overriding Methods
• Our new rules also handle method overriding!

• Use overriding when:

• Factoring out a method definition common to several
variants

• Suppose several shapes compute their area in the
same way

• Augmenting the behavior of classes we do not
maintain

Overriding Methods

• Scala requires that overriding method definitions
include the keyword overrides

• Why require this extra keyword?

The Fragile Base Class
Problem

• Suppose I define a base class Shape

• Later a client extends Shape with class Triangle
and defines a private method position to record
the position of one point of a triangle

• Yet later, I release a new version of my class Shape
with a private method position to record the
position of the center of the shape

The Fragile Base Class
Problem

• This is an example of accidental overriding

• The overrides keyword catches the problem
when the subclass Triangle is recompiled
against the new version of Shape

Two Occasions to Consider
Overriding

• The default equals methods on case classes:

Rational(4,6) equals Rational(2,3)

Two Occasions to Consider
Overriding

• The default toString methods on case classes:

Rational(4,6) + Rational(2,3) ↦

Rational(4,3)

What is printed during Interactions is determined by toString

Two Occasions to Consider
Overriding

• The default toString methods on case classes:

Rational(4,6) + Rational(2,3) ↦

4/3

What is printed during Interactions is determined by toString

Defining and Overriding
Methods

• Recall our rule for abstract methods

• When type checking a class definition, ensure that
all abstract methods declared in the superclass are
actually defined, with compatible method types

• We need to:

• Augment our rule to mention overriding (this is easy)

• Clarify “compatible method types”

Defining and Overriding
Methods

• When type checking a class definition, ensure that:

• All abstract methods declared in the superclass
are actually defined, with compatible method
types

• The types of all overriding methods are
compatible with the types of the methods they
override

Defining and Overriding
Methods

• When type checking a class definition, ensure that:

• All abstract methods declared in the superclass
are actually defined, and their types are
subtypes of the method types in the
corresponding declarations

• The types of all overriding methods are subtypes
of the method types they override

Arrow Types and Subtyping

• How do we define subtyping on arrow types?

• Historically this has been a painful source of bugs
in object-oriented languages

Arrow Types and Subtyping

• The substitution principle of arrow typing:

• If a function f has type S!T

and S!T <: U!V

then f can be safely used in any context
requiring a function of type U!V

Consider an Example

• So, makeLikeMe has type Shape ! Shape

• We are required to define it in all subclasses of Shape

abstract class Shape {
 def area(): Double

 def makeLikeMe(that: Shape): Shape
}

Consider a Calling Context

• What are some parameter types we can safely
declare for makeLikeMe when defining it in class
Circle?

• What are some return types we could safely declare?

 def matcher(shape1: Shape, shape2: Shape) = {
 shape1.makeLikeMe(shape2).area
 }

Consider a Calling Context

• Could class Circle define the parameter type of
makeLikeMe to be Circle?

// NOT ALLOWED
def makeLikeMe(that: Circle): Shape = that

 def matcher(shape1: Shape, shape2: Shape) = {
 shape1.makeLikeMe(shape2).area
 }

Consider a Calling Context

matcher(Circle(1), Square(1)) ↦

Circle(1).makeLikeMe(Square(1)).area ↦

And now we are stuck…

Consider a Calling Context

• Could class Circle define the parameter type of
makeLikeMe to be Any?

// This abides by our substitution principle
def makeLikeMe(that: Any): Shape = this

 def matcher(shape1: Shape, shape2: Shape) = {
 shape1.makeLikeMe(shape2).area
 }

Consider a Calling Context

matcher(Circle(1), Square(1)) ↦

Circle(1).makeLikeMe(Square(1)).area ↦

Circle(1).area ↦

3.14

Consider a Calling Context

• Could class Circle define the return type of
makeLikeMe to be Any?

// NOT ALLOWED
def makeLikeMe(that: Any): Any = “what’s up?”

 def matcher(shape1: Shape, shape2: Shape) = {
 shape1.makeLikeMe(shape2).area
 }

Consider a Calling Context

matcher(Circle(1), Square(1)) ↦

Circle(1).makeLikeMe(Square(1)).area ↦

“what’s up?”.area ↦

And now we are stuck…

Consider a Calling Context

• Could class Circle define the return type of
makeLikeMe to be Circle?

// This abides by our substitution principle
def isSimilarTo(that: Any): Circle = this

 def matcher(shape1: Shape, shape2: Shape) = {
 shape1.makeLikeMe(shape2).area
 }

Consider a Calling Context

matcher(Circle(1), Square(1)) ↦

Circle(1).makeLikeMe(Square(1)).area ↦

Circle(1).area ↦

3.14

Subtyping for Arrow Types

• A type S!T is a subtype of U!V iff

• U is a subtype of S

• T is a subtype of V

• We say that arrow types are contravariant in their
parameter type and covariant in their return type

A Limitation on Subtyping of
Method Types in Scala

• Parameter types of overriding methods must match
exactly in Scala

• This restriction is shared with Java and is a
limitation of the JVM

• We will see other uses of arrow types in Scala
where this restriction is not in place

Why Methods?
• Remember we are in Case 1: We Expect Few New

Functions But Many New Variants

• How do methods help with this case?

• All functions we support are declared in our abstract
class

• New variants can be added without changing old
code:

• Simply implement all the declared methods

Disadvantages of Methods

• If new functionality is added, every class definition
must be modified to include it

Throwing And
Catching Exceptions

We Can Throw and Catch
Exceptions as in Java

 def assertConstructorFail(m:Int, n:Int) = {
 try {
 Rational(m,n)
 fail()
 }
 catch {
 case e: IllegalArgumentException => {
 }
 }
 }

Syntax For Try/Catch

 try expr
 catch {
 case Pattern => expr

…
 }

Syntax For Throw

throw expr

Static Semantics For Throw
If e has static type T and

T <: Throwable

then

 throw e

has static type

Nothing

Static Semantics For Try/
Catch

• Given an expression e:

• Where expr0: T0, expr1: T1, …, exprN: TN,

• The type of e is the least type T such that:

T0 <: T, T1 <: T,…,TN <: T

 try expr0
 catch {
 case Pattern => expr1

…
 case Pattern => exprN
 }

Static Semantics For Try/
Catch

• The type of e is the least type T such that:

T0 <: T, T1 <: T,…,TN <: T

• Note that we can now use this approach to go back and
define better static typing rules for if-else and match
expressions

Dynamic Semantics For
Throw

• To explain the semantics of throw, we must introduce new
terminology

• Let the continuation of an expression e refer to all that
remains to be done in a computation after e is reduced

• We can think of a continuation as an expression with a
“hole” in it, corresponding to e

• Equivalently, we can think of a continuation as function
that takes a parameter, corresponding to the result of
evaluating e

Example Continuation

matcher(Circle(1), Square(1))

Example Continuation

matcher(Circle(1), Square(1))

Let this be our expression e

Example Continuation

matcher(, Square(1))

Then this is the continuation of e

Example Continuation

matcher(Circle(1), Square(1))

Once e is reduce to a value, the box is filled in,
and the continuation can be reduced

Reducing a Throw
Expression

• To reduce a throw expression:

• Reduce e to a value v

• Replace the continuation of the throw expression
with the special expression throw v

throw e

Reducing a Try/Catch
• To reduce a try/catch expression:

 try expr0
 catch {
 case Pattern => expr1

…
 case Pattern => exprN
 }

Reducing a Try/Catch
• Set aside the continuation C of the try/catch

• Reduce the body of the try in a special continuation D

• If D reduces to throw v:

• Restore the continuation C

• Try matching v against each pattern in the catch clause

• If a match is found, evaluate the body of the matching case

• Otherwise, reduce to throw v

