
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Try/Catch Example

Recall: Reducing a Try/
Catch

• Set aside the continuation C of the try/catch

• Reduce the body of the try in a special continuation D

• If D reduces to throw v:

• Restore the continuation C

• Try matching v against each pattern in the catch clause

• If a match is found, evaluate the body of the matching case

• Otherwise, reduce to throw v

• If D reduces to w, restore continuation C and reduce the try/catch to w

Consider Our Motivating
Test Helper Function

 def assertConstructorFail(m:Int, n:Int) = {
 try {
 Rational(m,n)
 fail()
 }
 catch {
 case e: IllegalArgumentException => {
 }
 }
 }

We Call Our Function In An
Enclosing Context

enclosingProgram (
 assertConstructorFail(1,0)
)
↦
enclosingProgram (
 try {
 {require(0 != 0); Rational(1,0)}
 fail()
 }
 catch {
 case e: IllegalArgumentException => {}
 }
)
↦

enclosingProgram (
 try {
 {require(0 != 0); Rational(1,0)}
 fail()
 }
 catch {
 case e: IllegalArgumentException => {}
 }
)
↦

{
 {require(0 != 0); Rational(1,0)}
 fail()
}

↦

Continuation C

Redex

C

{
 {require(0 != 0); Rational(1,0)}
 fail()
}

↦

{
 {throw IllegalArgumentException; Rational(1,0)}
 fail()
}

↦

throw IllegalArgumentException

↦

C

C

C

throw IllegalArgumentException
↦
enclosingProgram (
 try {
 throw IllegalArgumentException
 }
 catch {
 case e: IllegalArgumentException => {}
 }
)
↦
enclosingProgram (
 {}
)
↦
enclosingProgram ()

C

throw IllegalArgumentException
↦
enclosingProgram (
 try {
 throw IllegalArgumentException
 }
 catch {
 case e: AssertionError => {}
 }
)
↦
enclosingProgram (
 throw IllegalArgumentException
)
↦
throw IllegalArgumentException

C

What If Our Catch Clause
Does Not Match?

Continuations Are A Recurrent
Concept in Computer Science

• Distributed computing

• Parallel computing

• Operating systems

• A unified approach to control flow

Some Additional Helpful
Language Features

The Assert Function
assert: Boolean ! Unit

assert: (Boolean, String) ! Unit

• Note that the function is overloaded

• Use inside functions to ensure properties hold

• Do not assert unless you actually believe the
assertion is true!

Type Checking Overloaded
Functions

• For each overloaded declaration of a function f:

• Provide that declaration with a fresh name, in a
manner that respects method overriding

abstract class Shape {
 def area(): Double

 def makeLikeMe(that: Int): Shape
 def makeLikeMe(that: Shape): Shape
}

Type Checking Overloaded
Functions

• For each overloaded declaration of a function f:

• Provide that declaration with a fresh name, in a
manner that respects method overriding

abstract class Shape {
 def area(): Double

 def makeLikeMe$Int(that: Int): Shape
 def makeLikeMe$Shape(that: Shape): Shape
}

Type Checking Overloaded
Functions

• For each overloaded declaration of a function f:

• Provide that declaration with a fresh name, in a
manner that respects method overriding

case class Circle(radius: Int) {
 val pi = 3.14
 def area(): Double = pi * r * r

 def makeLikeMe$Int(that: Int): Shape = this
 def makeLikeMe$Shape(that: Shape): Shape = that
}

Type Checking an
Overloaded Function

• When an overloaded function is called on an argument
expression e with type T:

• If there is a unique matching function definition
whose parameter type is:

• A supertype of T

• A subtype of all other matching definitions

• Replace the function name with the unambiguous
name for that unique function

Reducing an Overloaded
Function Definition

• Because of the rewrite during type checking, our
reduction rules need no modification!

