Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC

Number of Students

20

15

10

Comp 311 Homework 1 Hours Spent

Hours

Number of Students

Comp 311 Homework 1 More Time Needed

Hours

Number of Students

15

10

Comp 311 Homework 1 Workload

Number of Students

8 10 12

6

Comp 311 Homework 1 Helpful

Number of Students

10

Comp 311 Homework 1 Enjoyable

Number of Students

20

15

10

Comp 311 Ease of Following Lectures

Comp 311 Pace

_
0c

_ _ [
Gl 0l G

SjUapNIS JO JaquinN

Rating

Comp 311 Enjoyable

|
14

[

1T 1T 1T 1
oL 8 9 v ¢ 0

SJUSpN)S JO Jaquinpn

Rating

Actions

* Switch to two week assignments
 Double the weighting on subseqguent assignments

 Keep Thursday at 2:30pm deadline

Importing a Member of a
Package

import scala.collection.immutable.List

Importing Multiple Members
of a Package

import scala.collection.immutable.{List, Vector}

Importing and Renaming
Members of a Package

import scala.collection.immutable.{List=>SList, Vector}

Importing All Members of a
Package

import scala.collection.immutable._

Note that * is a valid identifier in Scala!

Combining Notations

import scala.collection.immutable.{_}
same meaning as:

import scala.collection.immutable._

Combining Notations

import scala.collection.immutable.{List=>SList,_}

Imports all members of the package but renames
List to SL1ist

Combining Notations

import scala.collection.immutable.{List=>_,_}

Imports all members of the package except tor
List

Importing a Package

1mport scala.collection.immutable
Now sub-packages can be denoted by shorter names:

immutable.L1ist

Importing and Renaming
Packages

1mport scala.collection.{immutable => 1}
Allows members to be written like this:

I.L1ist

Importing Members of An
Object

import Arithmetic._

Allows members such as Arithmetic.gcd to be
write like this:

gcd

Implicit Imports

The following imports are implicitly included
IN your program:

1mport java.lang._
1mport scala._
import Predef._

Package Java.lang

e Contains all the standard Java classes
* This import allows you to write things like:

Thread

instead of:

java. lang.Thread

Package scala

e Provides access to the standard Scala classes:

BigInt, BigDecimal, List, etc.

Object Predet

e Definitions of many commonly used types and
methods, such as:

require, ensuring, assert

Visibility Moditier Private

For a method Arithmetic.reduce in package Rationals

Modifier Explanation

no modifier public access

private private to class Arithmetic

| ocal Definitions

e As with constant definitions, we can make function
definitions local to the body of a function

* The functions can be referred to only in the body of
the enclosing function

| ocal Definitions

def reduce() = {
val 1sPositive =
((numerator < 0) & (denominator < 0)) |

((numerator > 0) & (denominator > 0))

def reduceFromIntsCnum: Int, denom: Int) = {
require ((num >= 0) & (denom > 0))
val gcd = Arithmetic.gcd(Cnum, denom)
val newNum = num/gcd
val newDenom = denom/gcd

1f (1sPositive) Rational(newNum, newDenom)
else Rational(-newNum, newDenom)

¥

reduceFromInts(Arithmetic.abs(numerator), Arithmetic.abs(denominator))

} ensuring (_ match {
case Rational(n,d) => Arithmetic.gcd(n,d) == 1 & (d > 0)

1)

Design Templates for
Abstract Datatypes
(Part 2)

Case Two
We Expect Many New
Functions But Few New Variants

Case 2: We Expect Many New
Functions But Few New Variants

e This is a case that traditional functional
programming handles well

* Classic example domains: Compilers, theorem
provers, numeric algorithms, machine learning

* Declare a top-level function with cases for each
data variant

a.k.a., The Visitor Pattern

Again We lurn to Pattern
Matching

val p1 = 3.14

def area(shape: Shape) = {
shape match {
case Circle(r) => p1 * r * r
case Square(x) => x * x
case Rectangle(x,y) => x * vy
¥
5

We Can Define Arbitrary Functions
Without Moditying Data Definitions

def makelLikeFirst(shape@: Shape, shapel: Shape) = {
(shape@, shapel) match {
case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((1+w)/2)

case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((1+w)/2)

case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)

case _ => shapel

But A New Data Variant Requires Us To
Modity All Functions Over the Datatype

val p1 = 3.14

def area(shape: Shape) = {
shape match {
case Circle(r) => p1 * r * r
case Square(x) => X * X
case Rectangle(x,y) => x * vy
case Triangle(b,h) => b*h/2
3
3

But A New Data Variant Requires Us To
Modity All Functions Over the Datatype

def makelLikeFirst(shape@: Shape, shapel: Shape) = {
(shape@®, shapel) match {
case (Circle(r), Square(s)) => Circle(s)
case (Circle(r), Rectangle(l,w)) => Circle((1+w)/2)
case (Circle(r), Triangle(b,h)) => Circle(b)

case (Square(s), Circle(r)) => Square(r)
case (Square(s), Rectangle(l,w)) => Square((l+w)/2)
case (Square(s), Triangle(b,h)) => Square(b+h/2)

case (Rectangle(l,w), Circle(r)) => Rectangle(r,r)
case (Rectangle(l,w), Square(s)) => Rectangle(s,s)
case (Rectangle(l,w), Triangle(b,h)) => Rectangle(b,h)

// plus all the cases for Triangle on the left (omitted)
case _ => shapel

Recursively Defined
Datatypes

Recursively Defined
Datatypes

Case classes allow us to combine multiple pieces
of a data into a single object

But sometimes we don't know how many things we
wish to combine

We can use recursion to define datatypes of
unbounded size

This case corresponds to the Composite Design
Pattern

Backus-Naur Form
For Lists of Ints

List ::= Empty
| Cons(Int,List)

Examples of Lists

Empty
Cons(3, Empty)
Cons(3, Cons(l, Empty))
Cons(3, Cons(1l, Cons(4, Empty)))

Defining Lists With Scala
Case Classes

abstract class List
case object Empty extends List
case class ConsChead: Int, tail: List) extends List

Where Do We Put Functions
Over Lists?

We do not expect to define new subtypes of lists

We do expect to define many new functions over
ists

Similar to our Case Two Design Template for
Abstract Datatypes

Thus, we will start with our pattern matching
template

An Example Function for
Lists

def containsZero(xs: List): Boolean = {
XS match {
case Empty => false
case Cons(n, ys) => {
1f (n == @) true
else containsZero(ys)
¥
¥
¥

An Example Function for
Lists

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)
5
¥

Generalizing to Our First
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => ..
case Cons(n, ys) => .. n .. ourFunction(ys) ..

¥
¥

Generalizing to Our First
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {

case Empty =>|..

case Cons(n, ys) x> .. n .. ourFunction(ys) ..

¥
¥

We need to determine our base case

Generalizing to Our First
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {
case Empty => ..

case Cons(n, ys) =>|.. n .. ourFunction(ys) ..

: /

We must determine how to combine these values

Generalizing to Our First
Template Function for Lists

def ourFunction(xs: List): Boolean = {
xs match {

case Empty => ..
case Cons(n, ys) => .. n .. ourFunction(ys) ..

¥
¥

nis template is an example of natural recursion

- structural recursion:. We recursively decompose
nd then recombine a computation according to
he natural structure of the data.

QO O —

—

Filling In the Template

def containsZero(xs: List): Boolean = {

xs match {
case Empty =>

case Cons(n, ys) => (n
5
¥

Here the base case Is easy:

false

®) ||l containsZero(ys)

An empty list does not contain zero

(or anything else)

Filling In the Template

def containsZero(xs: List): Boolean = {
xs match {

case Empty => false

case Cons(n, ys) => [(n == 0) || containsZero(ys)

5
¥
We break Into cases based on the pieces

from match: Either our first element nis zero
or the answer lies with the rest of the list

Another Example:
How Many Elements®

def length(xs: List): Int = {
xs match {
case Empty => 0
case Cons(n, ys) => 1 + length(ys)
5
3

Another Example:
The Sum of the Elements

def sum(xs: List): Int = {
xs match {
case Empty => 0
case Cons(n, ys) => n + sum(ys)
¥
¥

Another Example:
The Product of the Elements

def product(xs: List): Int = {
xs match {
case Empty => 1
case Cons(n, ys) => n * product(ys)

¥
¥

Converting Hours to
Seconds

Problem Statement: Given a list of times
measured In hours, we want to construct a list of
corresponding times measured in seconds

Converting Hours to
Seconds

def hoursToSeconds(xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => Cons(seconds(n), hoursToSeconds(ys))
3
3

def seconds(Chours: Int) = 3600 * hours

Generalizing to a Template

def ourFunction(xs: List): List = {
xs match {
case Empty => ..
case Cons(n, ys) => Cons(.n..,
ourFunction(ys))

Really, this is the same template as
before, but now Cons is our combining
operation

1The Natural Numbers

Nat ::= 0
| Next(Nat)

1The Natural Numbers

Nat ::= 0
| Next(Nat)

Here we are between Cases One and Two for Abstract
Datatypes:

e NO new variants expected
e Many new functions expected
e But some basic functions are Iintrinsic to the type

Defining The Natural
Numbers in Scala

abstract class Nat
case object Zero extends Nat
case class Next(n: Nat) extends Nat

Defining The Natural
Numbers in Scala

abstract class Nat {
def +(n: Nat): Nat
def *(n: Nat): Nat
}

Defining The Natural
Numbers in Scala

case object Zero extends Nat {
def +(n: Nat) = n
def *(n: Nat) = Zero

¥

case class Next(n: Nat) extends Nat {
def +(m: Nat) = Next(n + m)
def *(m: Nat) =m + (n * m)

}

Defining The Natural
Numbers in Scala

case object Zero extends Nat {

def +(n: Nat) = n.__

def *(n: Nat) = Zero+— Again we have natural
1 recursion: pase case,

recursion, combination

case class Next(n: Ngfz;gZiends Nat {

def +(m: Nat) = Nextf{h + m)
def *(m: Nat) =m + (n * m)
}

Example Reduction
(3 + 2)

Next(Next(Next(Zero)) + Next(Next(Zero)) =~
Next(Next(Next(Zero)) + Next(Next(Zero))) =~
Next(Next(Next(Zero) + Next(Next(Zero)))) =~

Next(Next(Next(Zero + Next(Next(Zero))))) ~
Next (Next(Next(Next(Next(Zero)))))

Factorial

def factorial(n: Nat): Nat = {
n match {
case Zero => Next(Zero)
case Next(m) => n * factorial(m)

¥
¥

Transferring The Pattern
To Ints

def factorial(n: Int): Int = {
require (n >= 0)

1f (n==0) 1
else n * factorial(n - 1)

} ensuring (_ > 0)

Combining Via
Auxiliary Functions

Combining Via Auxiliary
Functions

* As our examples with natural numbers shows, it is
often necessary to define the combining operation
of a natural recursion as an auxiliary function

 We can apply this insight to lists and use our
template to cover yet more cases

Sorting Lists

def sort(xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => insert(n, sort(ys))

¥
¥

We need to explain how to
Insert Into a sorted list

lNnsertion

def insert(n: Int, xs: List): List = {
xs match {
case Empty => Cons(n, Empty)
case Cons(m, ys) => {
1f (n <= m) Cons(n, Xs)
else Cons(m, insert(n, ys))
}
¥
¥

lNnsertion

def insert(n: Int, xs: List): List = {
xs match {
case Empty x> Cons(n, Empty)
case Cons(m, Yys) => {
1f (n <= m) Cons(n, xs)
else Cons(m, txsert(n, ys))

¥
¥

} This parameter is not traversed,
but is used for combination and comparison
Other functions follow this pattern.

Appending Two Lists

abstract class List {
/**
* Returns a new list with the elements of
* this list appended to the given list.
*/
def ++(ys: List): List
¥

Appending Two Lists

case object Empty extends List {
def ++(ys: List) = ys
¥

Appending Two Lists

case class Cons(first: Int, rest: List) extends List {
def ++(ys: List) = Cons(first, rest ++ ys)

¥

Family Irees

TreeNode ::= Empty
| Child(TreeNode,
TreeNode,
Int,
String)

Family Irees

abstract class TreeNode

case object EmptyNode extends TreeNode

case class Child(mother: TreeNode,
father: TreeNode,
yearOfBirth: Int,

eyeColor: String)
extends TreeNode

yearOfBirth: 2010
eyeColor: “blue”

yearOfBirth: 1989
eyeColor: “brown”

N

yearOfBirth: 1990
eyeColor: “blue”

yearOfBirth: 1967
eyeColor: “brown”

yearOfBirth: 1970
eyeColor: “blue”

yearOfBirth: 1965
eyeColor: “blue”

<\

Empty

Empty

[\

Empty Empty

yearOfBirth: 1969
eyeColor: “blue”

Empty

N\

Empty

Empty

\

Empty

Family Irees

def hasBlueEyedAncestor(t: TreeNode): Boolean = {
t match {
case EmptyNode => false
case Child(m,f,b,e) => ((e == "Blue") ||
hasBluekyedAncestor(m) ||
hasBlueEyedAncestor(f))

Binary Search Trees

Binary Search Trees

* We will define trees containing only Ints

* Jo help us find elements quickly, we will abide by
the following invariant:

* At a given node containing value n:
e All values in the left subtree are less than n

* All values in the right subtree are greater than n

121

53

/

Empty

N\

Empty

/\

26 Empty

74

183

Empty

165

216

\

Empty

AT

Empty

Empty

Binary Search Trees

abstract class BinarySearchTree {
def contains(n: Int): Boolean
def insert(n: Int): BinarySearchTree

¥

Binary Search Trees

case object EmptyTree extends BinarySearchTree {
def contains(n: Int) = false
def insert(n: Int) = ConsTree(n, EmptyTree, EmptyTree)

¥

Binary Search Trees

case class ConsTree(m: Int,
left: BinarySearchTree,
right: BinarySearchTree)
extends BinarySearchTree {

def contains(n: Int): Boolean = {
1f (n < m) left.contains(n)
else 1f (n > m) right.contains(n)
else true // n ==m
}
def insert(n: Int) = {
1f (n < m) ConsTree(m, left.insert(n), right)
else 1f (n > m) ConsTree(m, left, right.insert(n))
else this // n == m

¥
5

What if we call

1nsert with 1437

/)

Empty

2

[\

Empty

121

183

EmMpty Empty

165

216

\

Empty

AT

Empty

Empty

What if we call
1nsert with 1437

Empty

2

Empty

\

121

74

/N

Empty

143

121

=]

Empty Empty Empty EMPty

Empty

/¥
\

Empty

