Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC

Announcements

« Homework 2 Available from Piazza (Due October 1)

* Two Sigma Info Session at Huff House, 4pm Today

Traversing Multiple
Recursive Datatypes

laking the First Few
Elements

def take(n: Nat, xs: List): List = {
// require n <= size(xs)
(n,xs) match {
case (Zero, xs) => Empty
case (Next(m), Cons(y, ys)) => Cons(y, take(m, ys))
}
¥

laking the First Few
Elements

def take(n: Int, xs: List): List = {
require ((n >= 0) && (n <= size(xs)))
(n,xs) match {
case (@, xs) => Empty
case (n, Cons(y, ys)) => Cons(y, take(n-1, ys))
}
¥

Dropping the First Few
Elements

def drop(n: Int, xs: List): List = {
require (n <= size(xs))
(n, xs) match {
case (0, xs) => xs
case (n, Cons(y, ys)) => drop(n-1, ys)
5
3

Functional Update of a List

def update(xs: List, 1: Nat, y: Int): List = {
require (xs != Empty) // && 1 < size(xs)

(xs, 1) match {
case (Cons(z, zs), Zero) => Cons(y, zs)
case (Cons(z, zs), Next(j)) => Cons(z, update(zs,j,y))

¥
¥

Functional Update of a List

def update(xs: List, 1: Int, y: Int): List = {
require ((1 >= 0) && (1 < s1ze(xs)))
assert (xs != Empty)

(xs, 1) match {
case (Cons(z, zs), @) => Cons(y, zs)
case (Cons(z, zs), _) => Cons(z, update(zs,i-1,y))
¥
¥

Design Abstraction

Our Function Templates
Reveal Common Structure

def containsZero(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 0) || containsZero(ys)
¥
¥

def containsOne(xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n == 1) || containsOne(ys)
¥
¥

Our Function Templates
Reveal Common Structure

def contains(m: Int, xs: List): Boolean = {
xs match {
case Empty => false
case Cons(n, ys) => (n ==m) || contains(m, ys)
3
3

But Sometimes the Part We
Want to Abstract Is a Function

def below(m: Int, xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => {
1f (n < m) Cons(n, below(m, ys))
else below(m, ys)

¥
¥
¥

But Sometimes the Part We
Want to Abstract Is a Function

def above(m: Int, xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => {
1f (n > m) Cons(n, above(m, ys))
else above(m, ys)

¥
¥
¥

lTaking Functions As
Parameters

def filter(f: (Int)=>Boolean, xs: List): List = {
xs match {
case Empty => Empty
case Cons(n, ys) => {
1t (f(n)) Cons(n, filter(f, ys))
else filter(f, ys)
}
¥
¥

Passing runctions as
Arguments

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n > 0)), xs) »*
Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n < 0)), xs) ~*
Empty

filter(((n: Int) => (n < 3)), xs) »*
Cons(1,Cons(Z2,Empty))

Passing runctions as
Arguments

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(((n: Int) => (n > 0)y), xs) »*
Cons(1,Cons(2,Cons(3,Cons(4, s(5,Cons(6,Empty))))))

filter(((n: Int) => (n < 0)), xs) &
Empty

filter(((n: Int) => (n < 3)), xs) »*

Cons(1,Cons(2,Empty)) *““*\-\\\\\\\\\\\\
These are

function literals

First-Class Functions

* Function literals are expressions with static arrow
types that reduce to function values

* The value type of a function value is also an arrow
type

e Function values are first-class values:

* [hey are allowed to be passed as arguments

* [hey are allowed to be returned as results

Simplitying Function Literals

 Parameter types on function literals are allowed to
be elided whenever the types are clear from
context

filter(((n: Int) == (n > 0)), Xxs)
can be written as

filter(((n) == (n > 0)), xs)

Simplitying Function Literals

 Parentheses around a single parameter is allowed
to be omitted

filter(((n) => (n > 0)), xs)
can be written as

filter(n = (n > @), xs)

Simplifying Function Literals

 When a single parameter is used only once in the body of a
function literal:

 We can drop the parameter list

 We simply write the body with an _ at the place where the
parameter Is used

For example,
((x: Int) == (x < 0))
becomes

< 0

