Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC



Passing runction Literals As
Arguments

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))

filter(_ < 3, xs) »* Cons(1l,Cons(2,Empty))



Guidelines On Using
Function Literals

e Function literals are well-suited to situations In
which:

* [he function is only used once
e The function Is not recursive

* The function does not constitute a key concept in
the problem domain



Comprehensions

{22 | x € xs}



Mapping a Computation
Over a List

def double(xs: List) = {
xs match {
case Empty => Empty
case Cons(y,ys) => Cons(y * y, double(ys))
3
3



Mapping a Computation
Over a List

def negate(xs: List) = {
xs match {
case Empty => Empty
case Cons(y,ys) => (-y, negate(ys))
3
3



Negation as a
Comprehension

{—x | x € zs}



Generalizing a Mapping
Computation

def map(f: Int => Int, xs: List) = {
xs match {
case Empty => Empty
case Cons(y,ys) => Cons(f(y), map(f,ys))
¥
¥



Mapping a Computation
Over a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(o6,Empty))))))

negate(xs) »*
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

double(xs) —*
Cons(1,Cons(4,Cons(9,Cons(16,Cons(25,Cons(36,Empty))))))



Mapping a Computation
Over a List

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(b,Empty))))))

map(“—a XS) - ¥
Cons(-1,Cons(-2,Cons(-3,Cons(-4,Cons(-5,Cons(-6,Empty))))))

map(x => X * x, Xs) »*
Cons(1,Cons(4,Cons(9,Cons(16,Cons(25,Cons(36,Empty))))))



Recall Our Sum Function
Over Lists

def sum(xs: List): Int = {
xs match {
case Empty => 0
case Cons(y,ys) => y + sum(ys)

¥
¥



In Mathematics, We Might
Write this as a Summation

> @

rexs




And Our Product Function
Over Lists

def product(xs: List): Int = {
xs match {
case Empty => 1
case Cons(y,ys) => y * sum(ys)

¥
¥



In Mathematics, We Might
Write this as a Product

] =

rexs



We Abstract to a Reduction
Function Over Lists

def reduce(base: Int, f: (Int, Int) => Int, xs: List): Int = {
xs match {
case Empty => base
case Cons(y,ys) => f(y, reduce(base, f, ys))

¥
¥



Example Reductions

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(6,Empty))))))
reduce(0, (X,y) => X + Yy, Xs) »* 21

reduce(l, (X,y) => x * y, xs) »* 720



Min and Max

def max(xs: List) = {
reduce(Int.MinValue, (x,y) => 1f (x > y) x else y, xs)
}

def min(xs: List) = {
reduce(Int.MaxValue, (x,y) => 1f (X < y) X else y, Xs)
}



Simplifying Function Literals

 When each parameter is used only once in the body of a
function literal, and in the order in which they are passed:

 We can drop the parameter list

 We simply write the body with an _ at the place where each
parameter Is used

For example,
((x: Int, y: Int) == (X + vy))
becomes

+



Example Reductions

val xs = Cons(1,Cons(2,Cons(3,Cons(4,Cons(5,Cons(b6,Empty))))))

reduce(0, _+_, xs) »* 21

X ~* 720

N\

Note the multiple parameters

reduce(l, _*



Combinations of Maps anad
Reductions



Combinations of Maps anad
Reductions

reduce(@, _+_, map(x => x*x + 1, xs))



Summation

def summation(xs: List, f: Int => Int) =
reduce(@, _+_, map(f, xs))



Summation

def square(x:Int) = x * Xx

summation(xs, square(_)+1)



More Syntactic Sugar

e Functions defined with def can be passed as

arguments whenever an expression of a
compatible function type is expected

 What constitutes a compatible function type”?



Partially Applied Functions

e |t we want to pass a function as an argument, but
supply some of the arguments to the function
ourselves, we can wrap an application to the
function in a function literal:

map(x => X + 1, XS)



Partially Applied Functions

e |t we want to pass a function as an argument, but
supply some of the arguments to the function
ourselves, we can wrap an application to the
function in a function literal:

map(x => X + 1, Xs)
which Is equivalent to

map(_ + 1, xs)



Partially Applied Functions

 Eta Expansion: Wrapping a function in function
iteral that takes all of the arguments of f and
immediately calls f with those arguments

(x:Int) => square(x)
IS equivalent to

square



Mapping a Computation
Over a List

We can use eta expansion to pass operators
as arguments:

map(X => -X, XS)



Mapping a Computation
Over a List

We can use eta expansion to pass operators
as arguments:

map(_—: XS)



Returning Functions
as Values



We Can Define Functions That
Return Other Functions as Values

def add(x: Int): Int => Int = {
def addX(y: Int) = x + vy
addX

¥



We Can Define Functions That
Return Other Functions as Values

def add(x: Int): Int => Int = {
def addX(y: Int) /X + vy
addX

¥

The explicit return type Is needed because
Scala type inference assumes an unapplied
function is an error



We Can Define Functions That
Return Other Functions as Values

def add(x: Int) = {
def addX(y: Int) = x + vy
addX _
} \
Alternatively, we can eta-expand addX to assure
the type checker that we really do intend to return a function



We Can Define Functions That
Return Other Functions as Values

def add(x: Int) = {
def addX(y: Int) = X + vy
addX _
I3 \
An underscore outside of parentheses in a function

application denotes the entire tuple of arguments
passed to the function



We Can Define Functions That
Return Other Functions as Values

def add(x: Int)

X + (_: Int)

We can instead define add by partially eta-expanding
the + operator. But then we need to annotate the
second operand with a type.



Aside: lype Annotations

* |n general, an expression annotated with a type Is
itself an expression:

expr: Type

* If the static type of expr is a subtype of Type, then
the type of expr:Typeis Type




Partial Eta-Expansion

 We can partially eta-expand any function, but we
need to annotate the argument types:

def reduce@ =
reduce(@, _: (Int, Int) => Int, _: List)



Derivatives

def derivative(f: Double => Double, dx: Double) =
(x: Double) =>
(f(x + dx) - f(x)) /
dx



Derivatives

def f(x: Double) = x * X
def Df = derivative(f, 0.00001)

f(4) » 16
Df(4) -~ 8.00000999952033



Encapsulating dx

def D(f: Double => Double) = {
val dx = 0.00001
(x: Double) =>
(f(x + dx) - T(x)) /
dx



Encapsulating dx

def D(f: Double => Double) = {
val dx k= 0.00001
(x: Doubhe) =>

(F(x +\dx) - f(x)) /
dx

Our returned function “remembers”
these values



Applying a Derivative

def D(f: Double => Double) = {
val dx = 0.00001
(x: Double) =>
(f(x + dx) - f(x)) /
dx

D(F)(4) »

D((x: Double) => x * x))(4) ~



Applying a Derivative

D((x: Double) => x * x))(4) »

{val dx = 0.00001
(x: Double) =>
((x: Double) => x * x)(X + dx) -
(x: Double) => x * x)(x)) /
dx 1(4) »



Applying a Derivative

{(x: Double) =>
((x: Double) => x * x)(x + 0.00001) -
(x: Double) => x * x)(x)) /
0.00001}+(4) -

((x: Double) == x * x)(4 + 0.00001) -
(x: Double) => x * (4)) /
0.00001 -~

We must be careful to substitute only
corresponding occurrences of X



Applying a Derivative

((x: Double) => x * x)(4 + 0.00001) -
(x: Double) => x * x)(4)) /
0.00001 -

((x: Double) => x * x)(4.00001) -
(x: Double) => x * x)(4)) /
0.00001 ~

((4.00001 * 4.00001) - (4 * 4)) /
0.00001 ~



Applying a Derivative

((4.00001 * 4.00001) - (4 * 4)) /
0.00001 ~

(16.000080000099995 - 16) /
0.00001 ~

8.00000999952033E-5 / 0.00001 ~

8.00000999952033



Safe Substitution



Applying a Derivative

{(x: Double) =>
((x: Double) => x * x)(x + 0.00001) -
(x: Double) => x * x)(x)) /
0.00001}(4) -~

((x: Double) => x * x)(4 + 0.00001) -

(x: Double) => x * (4)) /
0.00001 \

In cases like this one, we can avoid accidental
variable capture by selective renaming



Safe Substitution

(a.k.a. Alpha Renaming)

 \We can ensure we never accidentally substitute the
wrong parameters by automatically renaming
constants, functions, and parameters with fresh
names

* A fresh name must not capture a name reterred
to Iin the scope of a parameter

e A fresh name must not be captured by a name in
an enclosing scope



Applying a Derivative

{(x: Double) =>
(Cy: Double) => vy * yD(x + 0.00001) -
(z: Double) => z * z2)(x)) /
0.00001}(4) -~

(Cy: Double) =>vy * y)(4 + 0.00001) -
(z: Double) => z * z)(4)) /
0.00001



Function Equivalence

* Now we have seen the three forms of function equivalence
stipulated by the Lambda Calculus:

* Alpha Renaming: Changing the names of a function’s
parameters does not affect the meaning of the function

* Beta Reduction: To apply a function to an argument, reduce
to the body of the function, substituting occurrences of the
parameter with the corresponding argument

* Eta Equivalence: Two functions are equivalent iff they are

extensionally equivalent: They give the same results for all
arguments



Parametric lypes



Parametric lypes

e \WWe have defined two forms of lists: lists of ints and
ists of shapes

 Many computations useful for one are useful for the
other:

 Map, reduce, filter, etc.

e |t would be better to define lists and their
operations once for all of these cases



Parametric lypes

* Higher-order functions take functions as arguments
and return functions as results

* Likewise, parametric types, a.k.a., a generic types,
takes types as arguments and return types as
results



Parametric Lists

* Every application of this parametric type to an
argument yields a new type:

abstract class List[T] {
def ++(ys: List[T]): List[T]
I3



Parametric Lists

* Every application of this parametric type to an
argument yields a new type:

abstract class List[T <: Any] {
def ++(ys: List[T])? List[T]
}

We augment the declarations of type parameters to

permit an upper bound on all instantiations of a
parameter

* By default, the bound is Any



Syntax of Parametric Class
Definitions

<modifiers> class C[T1 <: N,..,TN <: N] extends N {
<ordinary class body>

¥

* We denote “naked” type parametersas T1, T2,
etc.

* \We denote all other types with N, M, etc.



Syntax of Parametric Class
Definitions

<modifiers> class C[T1 <: N,..,TN <: N] extends N {
<ordinary class body>

¥

 Declared type parameters 11, ..., TN are in scope
throughout the entire class detinition, including:

* [he bounds of type parameters

e The extends clause

* Object definitions must not be parametric



Parametric Lists

* Every application of this parametric type yields a
new type:

List[Int]
List[String]
List[List[Double]]
etc.



Parametric Lists

 Every application (a.k.a., instantiation) of this
parametric type yields a new type:

abstract class List[T] {
def ++(ys: List[T]): List[T]
}

Note that our parametric type can be instantiated with type
parameters, including its own!



Parametric Lists

case class Empty[S]() extends List[S] {
def ++(ys: List[S]) = ys
}

case class Cons[T]Chead: T, tail: List[T]) extends List[T] {
def ++(ys: List[T]) = Cons[T](Chead, tail ++ ys)
¥



Parametric Lists

case class Empty[S]() extends List[S] {
def ++(ys: List[S]) = ys
}

case class Cong[T]Chead: T, tail: List[T]) extends List[T] {
def ++(ys: List[T]) = Cons[T]Chead, tail ++ ys)
¥

Our definition requires a separate type Empty[S] for
every instantiation of S. Thus we must define Empty as
a class rather than an object.



Type Environments

* Jo explain how to type check expressions in the
context of parametric types, we must introduce the
notion of environments

 We define a type parameter environment to hold a
collection of zero or more type parameter
declarations with their bounds

* [ype environments can be extended with more
declarations



Type Checking a Class
Definition

* Jo type check a parametric class definition:

 Check the declarations of the class in a new type
parameter environment that extends the
enclosing environment with all its type
parameters




Type Checking a Function
Definition
* Jo type check a function definition in environment E:

 Check that the types of all parameters are well-
formed

* Find the type of the body of the function,
substituting occurrences of parameters with their

types

 Ensure that the type of the body is a subtype of
the declared return type (in environment E)



Well-Formedness of Types

* Atype is well-formed in environment E iff:
* |fitis a well-defined non-parametric type
* |tis atype parameter T in environment &
* |t is an instantiation of a defined parametric type and:
* All of its type arguments are well-formed types in E

* All of its type arguments respect the bounds on
their corresponding type parameters



Subtyping With
Environments

e |t s non-sensical to compare types in separate type
environments:

case class Empty[S]() extends List[S] {
def ++(ys: List[S]) = ys
¥

case class Cons[T]Chead: T, tail: List[T]) extends List[T] {
def ++(ys: List[T]) = Cons[T](Chead, tail ++ ys)
¥

e |Is S asubtype of T?



Subtyping With
Environments

* We must modify our subtyping rules to refer to an
environment E:

e S<:SinkE

e fS<:TinEand T<:UinEthenS<:UInE



Subtyping With
Environments

o |[f:

 class C[T1,..,TN] extends D[U1,..UM]
 and X1,..., XN are well-formed in E

* then C[X1,..XN] <: D[U1,..,UM][T1~-X1,.., TN=>XN]
in E



Subtyping With

ENnvironments
o |f:

 class C[T1,..,TN] extends D[U1,..UM]
 and X1,..., XN are well-formed in E

* then C[X1,..XN] <: D[UL,..,UM][T1~X1,.., TN=>XN]

e -

We use this notation to indicate safe substitution of T1 for X1,
.. TNfor XNin D[U1,..,UM]




Covariance

e (Can one instantiation of a parametric type be a
subtype of another?

» Currently our rules allow this only in the reflexive
case:

List[Int] <: List[Int] 1n E



Covariance

e [t would be useful to allow some instantiations to be
subtypes of another

 For example, we would like it to be the case that:

List[Int] <: List[Any]



Covariance

* |n general, we say that a parametric type C is
covariant with respect to its type parameter S if:

S <: T1in E
implies
C[S] <: C[T] 1n E

 \We must be careful that such relationships do not
break the soundness of our type system



Covariance

* [For a parametric type such as:

abstract class List[T <: Any] {
def ++(ys: List[T]): List[T]
}

» Andtypes Sand T, suchthatS <: Tinsome
environment E:

 What must we check about the body of class
List to allow for L1st[S] <: List[T] in E?



Covariance

» Consider instantiations for types String and Any:

abstract class List[Any] {
def ++(ys: List[Any]): List[Any]
¥
abstract class List[String] {
def ++(ys: List[String]): List[String]
¥



Covariance

* |f these were ordinary classes connected by an
extends class:

 We would need to ensure that the overriding
definition of ++ in class L1st[String] was

compatible with the overridden definition In
List[Any]



Covariance

abstract class List[Any] {
def ++(ys: List[Any]): List[Any]

}

abstract class List[String] extends List[Any] {
def ++(ys: List[String]): List[String]

¥



Covariance

abstract class List[Any] {

def ++(ys: List[Any]): List[Any]
}
abstract class List[String] extends List[Any] {

def ++(ys: List[String]): List[String]
} /

But if List[String] <: List[Any] in E
then this is not a valid override



Covariance

abstract class List[Any] {
def ++(ys: List[Any]): List[Any]

}
abstract class List[String] extends List[Any] {

def ++(ys: List[String]): List[String]

} /
On the other hand, the return types
are not problematic



Covariance

 From our example, we can glean the tollowing rule:

* We allow a parametric class C to be covariant

with respect to a type parameter T so long as T

does not appear in the types of the method
parameters of C



Covariance

abstract class List[+T] {}

* We stipulate that a parametric type Is covariant in a
parameter T by prefixing a + at the definition of T

* (We will return to our definition of append later)



Covariance

case object Empty extends List[Nothing] {
h

case class Cons[+T]Chead: T, tail: List[T])
extends List[T] {

¥



