Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC



Covariance

case object Empty extends List[Nothing] {
h

case\class Cons[+T](head: T, tail: List[T])

extendgs List[T]
s

Now we can define Empty as an object that extends the bottom of the List
types



Covariance and Append

* The problem with our original declaration of
append was that it was not general enough:

* [There Is no reason to require that we always
append lists of identical type

* Really, we can append a L1st[S] for any
supertype of our L1st[T]

* The result will be of type L1st[S]



L ower Bounds on lype
Parameters

* Thus far, we have allowed type parameters to include
upper bounds:

S <: T
* [hey can also include lower bounds:

S >: T
* Or they can include both:
S>: T <: U



Parametric Functions

 Just as we can add type parameters to a class

definition, we can also add them to a function
definition

* [he type parameters are in scope In the header
and body of the function



Covariance and Append

abstract class List[+T] {
def ++[S >: T](Cys: List[S]): List[S]
Iy

case object Empty extends List[Nothing] {
def ++[S](ys: List[S]) = ys
¥

case class Cons[+T]Chead: T, tail: List[T])
extends List[T] {

def ++[S >: T](ys: List[S]) = Cons(Chead, tail ++ ys)
}



Map Revisited

abstract class List[+T] {

aef map[U]J(f: T => U): List[U]
¥

Why is this occurrence of T acceptable?



We Consider Specific
Instantiations

abstract class List[Any] {

def map[U](f: Any => U): List[U]
1 t
abstract class List[String] {

def map[UICF: String => U): List[U]

} /
Then List[String] is an acceptable subtype of List[Any]
provided that (String => U) >: (Any => U)

which requires that String <: Any.




Generalizing Our Rules

* |n our example, type parameter T occurs as the
parameter of an arrow type:

e (String => U) >: (Any => U) in E provided:
 String <: AnyinkE
e U<: UinE

* So subtype L1st[String] <: List[Any]is
permitted



To Check Variance, We Annotate
Each Type Position With A Polarity

* Recursively descend a class definition:
* Attop level, all positions are positive
e Polarity is flipped at method parameter positions

e Polarity is flipped at method type parameter
positions

e Polarity is flipped at arrow type parameter
positions



Annotating Polarity

abstract class List[+T] {
def ++[S >: T](ys: List[S]): List[S*]
def map[U]J(f: T* = U ): List[U*]

}



We Generalize Our Rules for
Checking Variance As Follows

» Covariant type parameters (declared with +) are
allowed to occur only in positive locations

* [ype parameters with no annotation are allowed
to be used in all locations



Contravariance



Contravariance

* |In general, we say that a parametric type Cis
contravariant with respect to its type parameter S if;

S <: T1in E
implies
C[T] <: C[S] 1n E

* We must be careful that such relationships do not
break the soundness of our type system



Contravariance

* Syntactically, contravariant type parameter
declarations are annotated with a minus sign:

case class F[-A,+B]



To Check Variance, We Annotate
Each lype Location With A Polarity

Recursively descend a class definition:

At top level, all locations are positive

Polarity is flipped at method parameter positions
Polarity is flipped at method type parameter positions
Polarity is flipped at arrow type parameter positions

Polarity is tlipped at positions of contravariant type
parameters



Annotating Polarity

abstract class List[+T] {
def ++[S >: T](ys: List[S]): List[S*]
def map[U]J(f: T* = U ): List[U*]

}



We Generalize Our Rules for
Checking Variance As Follows

 Covariant type parameters (declared with +) are
allowed to occur only In positive locations

* [ype parameters with no annotation are allowed
to be used In all locations

* Contravariant type parameters are allowed to
occur only in negative locations



An Example of How We Might Use
Contravariant Type Parameters

abstract class Functionl[-S,+T] {
def apply(x:S): T
}



Map Revisited

case object Empty extends List[Nothing] {

def map[U](f: Nothing => U) = Empty
¥



Map Revisited

case class Cons[+T]Chead: T, tail: List[T])
extends List[T] {

aef map[U]J(f: T => U) =
Cons(fChead), tail.map(f))



Syntactic Sugar: Currying

e Scala provides special syntax for defining a function that
immediately returns another function:

def f(x0:T1,..,xN:TN) = (y0Q:Ul,..,yM:UM) => expr
can be written as;:

def f(x0:T1,..,xN:TN) (y0Q:Ul,..,yM:UM) = expr

e Defining a function in this way is called “currying” after the
computer scientist Haskell Curry



Reduce Revisited

abstract class List[+T] {

aef foldLeft[S >: T](x: S)(f: (5, S) => S): S
def foldRight[S >: T](x: S)(f: (5, S) == S): S

o

Note that these functions are curried



Reduce Revisited

case object Empty extends List[Nothing] {

aef foldLeft[S](x: S)(f: (5, S) == S) = x
def foldRight[S](x: S)(f: (5, S) == S) = X
ks



Reduce Revisited

case class Cons[+T]Chead: T, tail: List[T])
extends List[T] {

def foldLeft[S >: T](x: S)(f: (5, S) == S) =
tail.foldLeft(f(x, head), f)

def foldRight[S >: T](x: S)(f: (5, S) == S) =
f(tail.foldRight(x, f), head)
}
}



Reduce Revisited

def foldLeft[S >: T](x: S)(f: (5, S) == S) =
tail.foldLeft(f(x, head), f)

Cons(1,Cons(2,Cons(3,Empty))).foldLeft(@)(_+_) ~»
Cons(2,Cons(3,Empty)).foldLeft(@ + 1, _+_) »
Cons(2,Cons(3,Empty)).foldLeft(1l, _+_) =~
Cons(3,Empty).foldLeft(1 + 2, _+_) =~
Cons(3,Empty).foldLeft(3, _+_) »
Empty.foldLeft(3 + 3, _+_) »

Empty.foldLeft(b, _+_) »

6



Reduce Revisited

def foldRight[S >: T](x: S)(f: (S, S) == S) =
f(tail.foldRight(x, f), head)

Cons(1,Cons(2,Cons(3,Empty))).foldRight(@)(_+_) »
Cons(2,Cons(3,Empty)).foldRight(0, _+_) + 1 »
Cons(3,Empty).foldLeft(@, _+_ ) + 2 + 1 »
Empty.foldlLeft(@, _+_ ) + 3 + 2 + 1 &

O +3+2+1+~

6



Reduce Revisited

abstract class List[+T] {
def reduce[S >: T](f: (5, S) == S): S
} /
We can elide a zero element for the reduction
provided that the list is non-empty



Reduce Revisited

case object Empty extends List[Nothing] {

def reduce[S](f: (S, S) == S) =
throw ReduceError

N

case object ReducekError extends Error



Reduce Revisited

case class Cons[+T]Chead: T, tail: List[T])
extends List[T] {

def reduce[S >: T]J(f: (S, S) = S) =
tail.foldLeft[S]Chead)(f)

¥ /’
We explicitly instantiate the type parameter to foldLetft.
Without this, type inference will instantiate the type parameter

based on the static type of head (which is T) and then signal
an error that f is not of type (I, T) => 1.



Forall and ExiIsts

abstract class List[+T] {

def forall(p: T => Boolean) =
map(p).foldLeft(true, _&&_)

def exists(p: T => Boolean) =
map(p).foldLeft(false, _I1_)



Lengtn

abstract class List[+T] { ..
def length: Int
Iy
case object Empty extends List[Nothing] { ..
def length = 0
¥
case class Cons[+T]Chead: T, tail: List[T])
extends List[T] { ..
def length = map((_:T) => 1).reduce(_+_)

¥

In what real contexts could we justity this definition of length?



Pointwise Addition

def pointwiseAdd(xs: List[Int], ys: List[Int]): List[Int] = {
require (xs.length == ys.length)

(xs, ys) match {
case (Empty, Empty) => Empty
case (Cons(x1l, xsl1l), Cons(yl, ysl)) =>
Cons(x1 + yl1, pointwiseAdd(xsl,ysl))



Generalizing to ZipWith

// 1n class List:
def zipWith[U,V](f: (T, U) => V)(that: List[U]): List[V] = {
require (this.length == that.length)

(this, that) match {
case (Empty, Empty) => Empty
case (Cons(x1l,xsl), Cons(yl,ysl)) =>
Cons(f(x1,y1l), xsl.zipWith(f)(ysl))



Detining The Zip Function

// 1n class List:
def zip[U](that: List[U]) = zipWith((_, _: U))(that)



Defining Flatten

def flatten[S](xs: List[List[S]]) = {
xs.foldLeft(Empty)(_++_)

¥



Defining Flatten

def flatten[S](xs: List[List[S]]) = {
xs.foldLeft(Empty)(_+#+_)

¥

Because of the specific type of List needed,
we define as a top level function



Defining FlatMap

abstract class List[+T] {

def flatMap[S](f: T => List[S]) =
flatten(this.map(f))

¥
¥



Defining FlatMap

abstract class List[+T] {

def flatMap[S](f: T => List[S]) =
flattenCkthis.map(f))

¥
¥

In contrast to flatten, our flatMap function
can be defined on arbitrary lists



Defining FlatMap

* These definitions suggest that flatMap is the best
thought of as the more primitive notion

 We can define flatMap as a method on lists directly
and then define flatten in terms of it



Defining FlatMap

abstract class List[+T] { ..
def flatMap[S](f: Nothing => List[S]): List[S]
}

case object Empty extends List[Nothing] { ..
def flatMap[S](f: Nothing => List[S]) = Empty
}

case class Cons[+T]Chead: T, tail: List[T])
extends List[T] { ..
def flatMap[S](f: T => List[S]) =
f(head) ++ tail.flatMap(f)



Defining Filter

abstract class List[+T] {

def filter[U]J(p: T => Boolean): List[T]
h



Defining Filter

case object Empty extends List[Nothing] {

def filter[U](p: T => Boolean) = Empty
}



Defining Filter

case class Cons[+T]Chead: T, tail: List[T])
extends List[T] {

def filter[U](p: T => Boolean) = {
1f (pChead)) Cons(Chead, tail.filter(p))
else tail.filter(p)

¥
¥



FOr EXPressions



-Or EXPressions

As with all expressions, for expressions reduce to a
value

The value reduced to Is a collection

The type of collection produced depends on the
types of collections iterated over

Each iteration produces a value to include In the
resulting collection



Many Maps and Filters Can Be
Expressed Using For Expressions

for (X <- xs) yield square(x) + 1



Many Maps and Filters Can Be
Expressed Using For Expressions

for (X <- xs) yield square(x) + 1

/

We call this a generator



Many Maps and Filters Can Be
Expressed Using For Expressions

for clauses yi1eld body



Many Maps and Filters Can Be
Expressed Using For Expressions

for (1 <- 1 to 10) yield square(i) + 1



Many Maps and Filters Can Be
Expressed Using For Expressions

for (1 <- @ until 10) yield square(i) + 1

N\

Does not include 10



Many Maps and Filters Can Be
Expressed Using For Expressions

// BAD FORM
for (1 <- @ until xs.length)
yield square(xs.nth(i)) + 1



Many Maps and Filters Can Be
Expressed Using For Expressions

// Write this 1nstead
for (X <- Xxs)
yield square(x) + 1



For Expressions Can Also
Include Filters

for (x <- xs 1f x >= 0)
yield square(x) + 1

This is a filter



-llters In For Expressions

* Filters are attached to generators

* A given generator can have zero or more filters



For Expressions Can Also
Include Filters

for (

X <- XS

1f X >= 0

1f X % 2 ==

) yield square(x) + 1



Clauses Can Be Enclosed in
Braces Instead of Parentheses

for {

X <- XS

1f X >= 0

1f X % 2 ==

} yield square(x) + 1



For Expressions Can Include
Multiple Generators

for {

X <- XS
1f X >= 0
y <- VYS
1fy% 2 ==
} yield x * vy



For Expressions Can Include
| ocal Bindings

for {

X <- XS

1f X >= 0

sgquare = x * Xx

y <- VyS

1f y % square ==
} yield x * vy



Generators Can Specity
Arbitrary Patterns

val xs = Cons(Square(4),
Cons(Circle(3),
Cons(Rectangle(Z2,3),

Empty)))

for {
Rectangle(x,y) <- XS
} yield x * vy

Cons(6.0, Empty)



Generators Can Specity
Arbitrary Patterns

e Elements of the collection that do not match the
pattern are filtered

« Effectively, a pattern in a for expression serves as
part of a generator and a filter



Guidelines on Using For
EXPressions

* Prefer for expressions to maps and filters

* They tend to be easier to read:

* All bindings and collections iterated over are
isted up front



—or vs Map

e Compare:
for (x <- xs 1f x >= 0)
yield square(x) + 1
e Jo:

map(square(_) + 1, xs.filter(_ >= 0))



-Or Expressions and
Database Queries

 For expressions are similar to standard database
gueries

e Consider a simple in-memory database of books,
represented as a list of Book instances
(Odersky et al 2012).

case class Book(title: String, authors: String*)



-Or Expressions and
Database Queries

val books: List[Book] =
Cons(
Book(
“Structure and Interpretation of Computer Programs?”,
“Abelson, Harold”, “Sussman, Gerald J.”
D5
Book(
“How to Design Programs?”,
“Felleisen, Matthias”, “Findler, Robert Bruce”,
“Flatt, Mathew”, “Krishnamurthi, Shriram”

D)
Book(

“Programming in Scala”,
“Odersky, Martin”, “Spoon, Lex”, “Venners, Bill”

),



Finding All Books Whose Author
Has LLast Name “Sussman’”

for {
b <- books
a <- b.authors

1f z startsWith “Sussman”
} yield b.title



Finding All Books That Have
The String “Program” In the Title

for {

b <- books

1f (b.title 1ndexOf “Program” >= 0)
} yield b.title



Finding All Authors That Have Written
More Than One Book in the Database

for {
bl <- books
b2 <- books 1f bl != b2
al <- bl.authors
a2 <- bZ.authors
1f al == a’
} yield al



