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Translating For Expressions

• It turns out that for expressions are translated to 
maps, flatMaps, and filters! 

• Translation occurs before type checking 

• Why is this preferable? 

• We start by considering only for expressions with 
generators that bind simple names (no patterns)



Translating For Expressions 
With A Single Generator

for (x <- expr1) yield expr2
↦

expr1.map(x => expr2)



Translating For Expressions 
With a Generator and a Filter

for (x <- expr1 if expr2) yield expr3
↦

for (x <- expr1 withFilter (x => expr2)) yield expr3



Translating For Expressions 
With a Generator and a Filter

for (x <- expr1 if expr2) yield expr3
↦

for (x <- expr1 withFilter (x => expr2)) yield expr3
↦

expr1 withFilter (x => expert) map (x => expr3)

For now, read this as “filter”. We will return to it.



Translating For Expressions 
Starting With a Generator and a Filter

for (x <- expr1 if expr2; seq) yield expr3
↦
for (x <- expr1 withFilter (x => expr2); seq) 
  yield expr3



Translating For Expressions 
Starting With Two Generators

for (x <- expr1; y <- expr2; seq) yield expr3
↦
expr1.flatMap(x => for (y <- expr2; seq) yield expr3)



Translating For Expressions 
Example

for (b1 <- books; b2 <- books if b1 != b2;
     a1 <- b1.authors; a2 <- b2.authors if a1 == a2)
yield a1
↦
books flatMap (b1 =>
  books withFilter (b2 => b1 != b2) flatMap (b2 =>
    b1.authors flatMap (a1 => 
      b2.authors withFilter (a2 => a1 == a2)
        map (a2 => a1))))



Translating Patterns in 
Generators

for (pat <- expr1) yield expr2
↦
expr1 withFilter { _ match {
  case pat => true
  case _ => false
}} map {
  case pat => expr2
}



Translating Patterns in 
Generators

for (pat <- expr1) yield expr2
↦
expr1 withFilter { _ match {
  case pat => true
  case _ => false
}} map {
  case pat => expr2
}

Other cases with patterns and for expressions are 
similar



Generalizing For 
Expressions

• Because for expressions are simply translated to 
expressions involving map, flatMap, and 
withFilter, we can use for expressions over 
our own collections 

• We need only define map, flatMap, 
withFilter 

• Because translation occurs before type checking, 
there is no particular type that our collection must 
subtype



Generalizing For 
Expressions

• We can even define a subset of these methods and 
use our collection only in for expressions that 
translate to our subset! 

• For example, if we do not define withFilter, 
we cannot use our collection in a for expression 
with a filter



Generalizing For 
Expressions

• Because translation occurs before type checking, 
there is no particular signature that our methods 
map, flatMap, withFilter must satisfy! 

• All that is required is that the resulting, translated 
program passes type checking



The WithFilter Function
• In our own List implementation, we could simply 

define withFilter as filter, and our collection would 
work with for expressions 

• The idea behind withFilter is that it is often 
advantageous to simply wrap the collection in a 
view that performs the given filter on the next map or 

• Because no particular type signature is required, 
we need only define map and flatMap on our 
wrapper



The WithFilter Function

abstract class List[+T] {
  …
  def withFilter[S >: T, U](p: S => Boolean) = 
    WithFilter[S](p,this)
}



The WithFilter Function
case class WithFilter[T](p: T => Boolean, xs: List[T]) {
  def map[U](f: T => U): List[U] = {
    xs match {
      case Empty => Empty
      case Cons(y,ys) => {
        val rest = WithFilter(p,ys) map f
        if (p(y)) Cons(f(y), rest)
        else rest
      }
    }
  }
  …
}



The WithFilter Function

• Because results of withFilter are immediately taken 
apart by a map or a flatMap, we can still think of 
the result of a withFilter as being an instance of 
the original collection



Typical Structure of a Class That 
Works With For Expressions

abstract class C[A] {
  def map[B](f: A => B): C[B]
  def flatMap[B](f: A => C[B]): C[B]
  def withFilter(p: A => Boolean): C[A]
}



Monads
• In functional programming, a monad can be 

defined as a type for which we can formulate 

• The functions map, flatMap, and withFilter 

• A “unit constructor” which produces a monad 
from an element value 

• In an object-oriented language, we can think of 
the “unit constructor” simply as a constructor 
or a factory method 



Monads

• Because for expressions work over precisely those 
datatypes for which we can formulate functions that 
characterize monads, we can think of for 
expressions as syntax for computing with monads



Monads
• But monads are able to characterize far more than just 

collections: 

• I/O 

• State 

• Transactions 

• Options 

• etc.



Monads
• Thus, for expressions can be used in far more 

general contexts than simply walking over 
collections 

• When looking at library classes, watch for 
implementations of map, flatMap, 
withFilter 

• When these functions are defined, consider 
expressing your computation with for expressions



The Environment Model 
of Type Checking



The Environment Model of 
Type Checking

• We have used environments in type checking to 
hold the bounds on type parameters 

• They can also be used to record the types of 
names and function parameters 

• Rather than thinking of typing rules as substitutions, 
we can think of them directly as assertions on 
expressions that we can reason with according to a 
logic



The Environment Model of 
Type Checking

• As a convenient notation, we express subtyping 
rules in the context of an environment by placing 
an environment to the left of a “turnstile” and a 
typing judgement to the right 

{T <: Any} ` T <: T
[S-Refl1]



The Environment Model of 
Type Checking

• As a convenient notation, we express subtyping 
rules in the context of an environment by placing 
an environment to the left of a “turnstile” and a 
typing judgement to the right 

{T <: N} ` T <: T
[S-Refl2]



The Environment Model of 
Type Checking

• As a convenient notation, we express subtyping 
rules in the context of an environment by placing 
an environment to the left of a “turnstile” and a 
typing judgement to the right 

� ` T <: T
[S-Refl]



The Environment Model of 
Type Checking

• We express typing rules in the context of  

• a type parameter environment and  

• a type environment (mapping names to types)  

• We place both environments to the left of the 
“turnstile” (separated by a semicolon) and a typing 
judgement to the right: 

�;�+ {x:T} ` x:T

[T-Var]



The Environment Model of 
Type Checking

• Some typing judgements require assumptions 

• We place assumed judgements above a horizontal 
bar (above the resulting type judgement) 

�; (�+ x:N) ` e:M

�;� ` ((x:N) => e):(N => M)

[T-Arrow]



The Environment Model of 
Type Checking

• Function applications involve checking the function 
and the arguments: 

�;� ` e0 : R => S; �;� ` e1 : T; � ` T <: R;

�;� ` e0 e1:S
[T-App]



The Environment Model of 
Type Checking

• To type check an expression in a pair of 
environments: 

• Form a proof tree, where each node is the 
application of an inference rule 

• The root of the tree is the typing judgement we 
are trying to prove 

• Each premise in a given rule is the root of a 
subtree proving that premise



The Environment Model of 
Type Checking

• For each form of expression there is exactly one 
inference rule 

• Therefore, proving a typing judgement is a simple 
recursive descent over the structure of an 
expression



The Environment 
Model of Reduction



Limitations of the Substitution 
Model of Reduction

• Consider the following function definition: 

  def makeOddBooster(n: Int) = {
    require(n >= 0)
    def isEven(n: Int): Boolean = { 
      (n == 0) || isOdd(n - 1) 
    }
    def isOdd(n: Int): Boolean = { 
      !isEven(n) 
    }
    (m: Int) => if (isEven(m)) m else m + n
  }



Limitations of the Substitution 
Model of Reduction

• Our makeOddBooster function cannot be 
expanded before it is returned 

• It must remember the context in which it was 
formed 



The Environment Model of 
Reduction

• Name environments map names to values 

• Every expression is evaluated in the context of a 
name environment



The Environment Model of 
Reduction

• To evaluate a name, simply reduce to the value it is 
mapped to in the environment



The Environment Model of 
Reduction

• To evaluate a function, reduce it to a closure, which 
consists of two parts: 

• The body of the function 

• The environment in which the body occurs



The Environment Model of 
Reduction

• To evaluate an application of a closure 

• Extend the environment of the closure, mapping 
the function’s parameters to argument values 

• Evaluate the body of the closure in this new 
environment



Example Evaluation
makeOddBooster(3)(1), ENV ↦

(m: Int) => if (isEven(m)) m else m + n)(1)
    {n: Int = 3, 
     isEven = Closure(..), 
     isOdd = Closure(..)}; ENV ↦
    if (isEven(m)) m else m + n,
    {m: Int = 1, n: Int = 3, ..}; ENV ↦*
    if (false) m else m + n,
    {m: Int = 1, n: Int = 3, ..}; ENV ↦ 
    m + n   
    {m: Int = 1, n: Int = 3, ..}; ENV ↦
    4, ENV 


