
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Translating For Expressions

• It turns out that for expressions are translated to
maps, flatMaps, and filters!

• Translation occurs before type checking

• Why is this preferable?

• We start by considering only for expressions with
generators that bind simple names (no patterns)

Translating For Expressions
With A Single Generator

for (x <- expr1) yield expr2
↦

expr1.map(x => expr2)

Translating For Expressions
With a Generator and a Filter

for (x <- expr1 if expr2) yield expr3
↦

for (x <- expr1 withFilter (x => expr2)) yield expr3

Translating For Expressions
With a Generator and a Filter

for (x <- expr1 if expr2) yield expr3
↦

for (x <- expr1 withFilter (x => expr2)) yield expr3
↦

expr1 withFilter (x => expert) map (x => expr3)

For now, read this as “filter”. We will return to it.

Translating For Expressions
Starting With a Generator and a Filter

for (x <- expr1 if expr2; seq) yield expr3
↦
for (x <- expr1 withFilter (x => expr2); seq)
 yield expr3

Translating For Expressions
Starting With Two Generators

for (x <- expr1; y <- expr2; seq) yield expr3
↦
expr1.flatMap(x => for (y <- expr2; seq) yield expr3)

Translating For Expressions
Example

for (b1 <- books; b2 <- books if b1 != b2;
 a1 <- b1.authors; a2 <- b2.authors if a1 == a2)
yield a1
↦
books flatMap (b1 =>
 books withFilter (b2 => b1 != b2) flatMap (b2 =>
 b1.authors flatMap (a1 =>
 b2.authors withFilter (a2 => a1 == a2)
 map (a2 => a1))))

Translating Patterns in
Generators

for (pat <- expr1) yield expr2
↦
expr1 withFilter { _ match {
 case pat => true
 case _ => false
}} map {
 case pat => expr2
}

Translating Patterns in
Generators

for (pat <- expr1) yield expr2
↦
expr1 withFilter { _ match {
 case pat => true
 case _ => false
}} map {
 case pat => expr2
}

Other cases with patterns and for expressions are
similar

Generalizing For
Expressions

• Because for expressions are simply translated to
expressions involving map, flatMap, and
withFilter, we can use for expressions over
our own collections

• We need only define map, flatMap,
withFilter

• Because translation occurs before type checking,
there is no particular type that our collection must
subtype

Generalizing For
Expressions

• We can even define a subset of these methods and
use our collection only in for expressions that
translate to our subset!

• For example, if we do not define withFilter,
we cannot use our collection in a for expression
with a filter

Generalizing For
Expressions

• Because translation occurs before type checking,
there is no particular signature that our methods
map, flatMap, withFilter must satisfy!

• All that is required is that the resulting, translated
program passes type checking

The WithFilter Function
• In our own List implementation, we could simply

define withFilter as filter, and our collection would
work with for expressions

• The idea behind withFilter is that it is often
advantageous to simply wrap the collection in a
view that performs the given filter on the next map or

• Because no particular type signature is required,
we need only define map and flatMap on our
wrapper

The WithFilter Function

abstract class List[+T] {
 …
 def withFilter[S >: T, U](p: S => Boolean) =
 WithFilter[S](p,this)
}

The WithFilter Function
case class WithFilter[T](p: T => Boolean, xs: List[T]) {
 def map[U](f: T => U): List[U] = {
 xs match {
 case Empty => Empty
 case Cons(y,ys) => {
 val rest = WithFilter(p,ys) map f
 if (p(y)) Cons(f(y), rest)
 else rest
 }
 }
 }
 …
}

The WithFilter Function

• Because results of withFilter are immediately taken
apart by a map or a flatMap, we can still think of
the result of a withFilter as being an instance of
the original collection

Typical Structure of a Class That
Works With For Expressions

abstract class C[A] {
 def map[B](f: A => B): C[B]
 def flatMap[B](f: A => C[B]): C[B]
 def withFilter(p: A => Boolean): C[A]
}

Monads
• In functional programming, a monad can be

defined as a type for which we can formulate

• The functions map, flatMap, and withFilter

• A “unit constructor” which produces a monad
from an element value

• In an object-oriented language, we can think of
the “unit constructor” simply as a constructor
or a factory method

Monads

• Because for expressions work over precisely those
datatypes for which we can formulate functions that
characterize monads, we can think of for
expressions as syntax for computing with monads

Monads
• But monads are able to characterize far more than just

collections:

• I/O

• State

• Transactions

• Options

• etc.

Monads
• Thus, for expressions can be used in far more

general contexts than simply walking over
collections

• When looking at library classes, watch for
implementations of map, flatMap,
withFilter

• When these functions are defined, consider
expressing your computation with for expressions

The Environment Model
of Type Checking

The Environment Model of
Type Checking

• We have used environments in type checking to
hold the bounds on type parameters

• They can also be used to record the types of
names and function parameters

• Rather than thinking of typing rules as substitutions,
we can think of them directly as assertions on
expressions that we can reason with according to a
logic

The Environment Model of
Type Checking

• As a convenient notation, we express subtyping
rules in the context of an environment by placing
an environment to the left of a “turnstile” and a
typing judgement to the right

{T <: Any} ` T <: T
[S-Refl1]

The Environment Model of
Type Checking

• As a convenient notation, we express subtyping
rules in the context of an environment by placing
an environment to the left of a “turnstile” and a
typing judgement to the right

{T <: N} ` T <: T
[S-Refl2]

The Environment Model of
Type Checking

• As a convenient notation, we express subtyping
rules in the context of an environment by placing
an environment to the left of a “turnstile” and a
typing judgement to the right

� ` T <: T
[S-Refl]

The Environment Model of
Type Checking

• We express typing rules in the context of

• a type parameter environment and

• a type environment (mapping names to types)

• We place both environments to the left of the
“turnstile” (separated by a semicolon) and a typing
judgement to the right:

�;�+ {x:T} ` x:T

[T-Var]

The Environment Model of
Type Checking

• Some typing judgements require assumptions

• We place assumed judgements above a horizontal
bar (above the resulting type judgement)

�; (�+ x:N) ` e:M

�;� ` ((x:N) => e):(N => M)

[T-Arrow]

The Environment Model of
Type Checking

• Function applications involve checking the function
and the arguments:

�;� ` e0 : R => S; �;� ` e1 : T; � ` T <: R;

�;� ` e0 e1:S
[T-App]

The Environment Model of
Type Checking

• To type check an expression in a pair of
environments:

• Form a proof tree, where each node is the
application of an inference rule

• The root of the tree is the typing judgement we
are trying to prove

• Each premise in a given rule is the root of a
subtree proving that premise

The Environment Model of
Type Checking

• For each form of expression there is exactly one
inference rule

• Therefore, proving a typing judgement is a simple
recursive descent over the structure of an
expression

The Environment
Model of Reduction

Limitations of the Substitution
Model of Reduction

• Consider the following function definition:

 def makeOddBooster(n: Int) = {
 require(n >= 0)
 def isEven(n: Int): Boolean = {
 (n == 0) || isOdd(n - 1)
 }
 def isOdd(n: Int): Boolean = {
 !isEven(n)
 }
 (m: Int) => if (isEven(m)) m else m + n
 }

Limitations of the Substitution
Model of Reduction

• Our makeOddBooster function cannot be
expanded before it is returned

• It must remember the context in which it was
formed

The Environment Model of
Reduction

• Name environments map names to values

• Every expression is evaluated in the context of a
name environment

The Environment Model of
Reduction

• To evaluate a name, simply reduce to the value it is
mapped to in the environment

The Environment Model of
Reduction

• To evaluate a function, reduce it to a closure, which
consists of two parts:

• The body of the function

• The environment in which the body occurs

The Environment Model of
Reduction

• To evaluate an application of a closure

• Extend the environment of the closure, mapping
the function’s parameters to argument values

• Evaluate the body of the closure in this new
environment

Example Evaluation
makeOddBooster(3)(1), ENV ↦

(m: Int) => if (isEven(m)) m else m + n)(1)
 {n: Int = 3,
 isEven = Closure(..),
 isOdd = Closure(..)}; ENV ↦
 if (isEven(m)) m else m + n,
 {m: Int = 1, n: Int = 3, ..}; ENV ↦*
 if (false) m else m + n,
 {m: Int = 1, n: Int = 3, ..}; ENV ↦
 m + n
 {m: Int = 1, n: Int = 3, ..}; ENV ↦
 4, ENV

