Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC

Translating For Expressions

e |t turns out that for expressions are translated to
maps, flatMaps, and filters!

e [ranslation occurs before type checking
 Why Is this preferable”

* We start by considering only for expressions with
generators that bind simple names (no patterns)

Translating For Expressions
With A Single Generator

for (x <- exprl) yield exprZ

exprl.map(x => expr2)

Translating For Expressions
With a Generator and a Filter

for (x <- exprl 1f expr2) yield expr3

for (X <- exprl withFilter (x => expr2)) yield expr3

Translating For Expressions
With a Generator and a Filter

for (x <- exprl 1f expr2) yield expr3

for (x <- exprl withFilter (x => expr2)) yield expr3

>

exprl withFilter (x => expert) map (x => expr3)

T

For now, read this as “filter”. We will return to it.

Translating For Expressions
Starting With a Generator and a Filter

for (x <- exprl 1f expr2; seq) yield expr3
for (x <- exprl withFilter (x => expr2); seq)
yield expr3

Translating For Expressions
Starting With Two Generators

for (X <- exprl; y <- expr2; seq) yield expr3

exprl.flatMap(x => for (y <- expr2; seq) yield expr3)

Translating For Expressions
Example

for (bl <- books; b2 <- books 1f bl != bZ;
al <- bl.authors; a2 <- bZ.authors 1f al == a2)
yield al

books flatMap (bl =>
books withFilter (b2 => bl != b2) flatMap (b2 =>
bl.authors flatMap (al =>
b2 .authors withFilter (a2 => al == al2)

map (a2 => al))))

Translating Patterns in
Generators

for (pat <- exprl) yield exprZ
exprl withFilter { _ match {
case pat => true
case _ => false

}r map {

case pat => expr’

¥

Translating Patterns in
Generators

for (pat <- exprl) yield exprZ

>

exprl withFilter { _ match {
case pat => true

case _ => false
Fr map {
case pat => expr’

¥

Other cases with patterns and for expressions are
similar

Generalizing For
EXPressions

 Because for expressions are simply translated to
expressions involving map, flatMap, and

withFi1lter, we can use for expressions over
our own collections

* We need only define map, flatMap,
withFilter

* Because translation occurs before type checking,
there Is no particular type that our collection must

subtype

Generalizing For
EXPressions

e \We can even define a subset of these methods and
use our collection only in for expressions that
translate to our subset!

* For example, if we do not define withFilter,

we cannot use our collection in a for expression
with a filter

Generalizing For
EXPressions

 Because translation occurs before type checking,
there i1s no particular signature that our methods
map, flatMap, withFilter must satisfy!

e All that is required is that the resulting, translated
program passes type checking

The WithFilter Function

* |n our own List implementation, we could simply
detine withFilter as ftilter, and our collection would

work with for expressions

 [he idea behind withFilter is that it is often
advantageous to simply wrap the collection in a
view that performs the given filter on the next map or

 Because no particular type signature Is required,
we need only define map and flatMap on our

wrapper

The WithFilter Function

abstract class List[+T] {

def withFilter[S >: T, U]J(p: S => Boolean) =
WithFilter[S](p,this)
¥

The WithFilter Function

case class WithFilter[T](p: T => Boolean, xs: List[T]) {
def map[U]J(f: T => U): List[U] = {
xs match {
case Empty => Empty
case Cons(y,ys) => {
val rest = WithFilter(p,ys) map f
1t (pCy)) Cons(f(y), rest)
else rest
¥
¥
¥

The WithFilter Function

 Because results of withFilter are immediately taken
apart by amap or a fLatMap, we can still think of

the result of awithF1lter as being an instance of
the original collection

Typical Structure of a Class That
Works With For Expressions

abstract class C[A] {
def map[B](f: A => B): C[B]
def flatMap[B](f: A => C[B]): C[B]
def withFilter(p: A => Boolean): C[A]
}

Monads

* |n functional programming, a monad can be
defined as a type for which we can formulate

* The functions map, flatMap, and withFilter

e A “unit constructor” which produces a monad
from an element value

* |n an object-oriented language, we can think of
the "unit constructor” simply as a constructor
or a factory method

Monads

 Because for expressions work over precisely those
datatypes for which we can formulate functions that

characterize monads, we can think of for
expressions as syntax for computing with monads

Monads

 But monads are able to characterize tar more than just
collections:

¢ |/O

e State

e [ransactions
e Options

* efc.

Monads

* Thus, for expressions can be used in far more
general contexts than simply walking over
collections

 When looking at library classes, watch for
implementations of map, flatMap,

withFilter

 \When these functions are defined, consider
expressing your computation with for expressions

The Environment Model
of Type Checking

The Env

ronment Model of

Type Checking

* \We have used environments in type checking to
hold the bounds on type parameters

* Theycanalsob

e used to record the types of

names and function parameters

e Rather than thin
we can think of

KINg of typing rules as substitutions,
‘hem directly as assertions on

expressions that we can reason with according to a

logic

The Environment Model of
Type Checking

* As a convenient notation, we express subtyping
rules in the context of an environment by placing
an environment to the left of a “turnstile” and a
typing judgement to the right

[S-Refl1]

{T <:Any} T <: T

The Environment Model of
Type Checking

* As a convenient notation, we express subtyping
rules in the context of an environment by placing
an environment to the left of a “turnstile” and a
typing judgement to the right

S—Refl2
{T<:N}|—T<:T[ef12]

The Environment Model of
Type Checking

* As a convenient notation, we express subtyping
rules in the context of an environment by placing
an environment to the left of a “turnstile” and a
typing judgement to the right

-Refl
AI—T<:T[S Refl]

The Environment Model of
Type Checking

* \We express typing rules in the context of

e atype parameter environment and

* atype environment (mapping names to types)

* We place both environments to the left of the
“turnstile” (separated by a semicolon) and a typing
judgement to the right:

AT

{x:T}Fx:T [I-Var]

The Environment Model of
Type Checking

e Some typing judgements require assumptions

 We place assumed judgements above a horizontal
bar (above the resulting type judgement)

A;(I'+x:N) - e:M
A:T'F ((x:N) => ¢e): (N => M)

[T-Arrow]

The Environment Model of
Type Checking

* Function applications involve checking the function
and the arguments:

AillFe:R=>8 Ailre:T AFT <2 B o, -
AT Fepeq:S >

The Environment Model of
Type Checking

* Jo type check an expression in a pair of
environments:

 Form a proof tree, where each node is the
application of an inference rule

* The root of the tree Is the typing judgement we
are trying to prove

 Each premise in a given rule is the root of a
subtree proving that premise

The Environment Model of
Type Checking

* For each form of expression there is exactly one
inference rule

e Therefore, proving a typing judgement is a simple
recursive descent over the structure of an

expression

The Environment
Model of Reduction

L imitations of the Substitution
Model of Reduction

* Consider the following function definition:

def makeOddBooster(n: Int) = {
require(n >= Q)
def i1sEven(n: Int): Boolean = {
(n==0) Il 1s0dd(n - 1)

}

def 1s0dd(n: Int): Boolean = {
l1sEven(n)

}

(m: Int) => 1f (i1sEven(m)) m else m + n

L imitations of the Substitution
Model of Reduction

* Our makeOddBooster function cannot be
expanded before it is returned

e [t must remember the context in which it was
formed

The Environment Model of
Reduction

* Name environments map names to values

* Every expression is evaluated in the context of a
name environment

The Environment Model of
Reduction

* Jo evaluate a name, simply reduce to the value it is
mapped to in the environment

The Environment Model of
Reduction

e [o evaluate a function, reduce it to a closure, which
consists of two parts:

* The body of the function

 The environment in which the body occurs

The Environment Model of
Reduction

O evaluate an application of a closure

* Extend the environment of the closure, mapping
the function’s parameters to argument values

* Evaluate the body of the closure in this new
environment

Example Evaluation

makeOddBooster(3)(1), ENV -
(m: Int) => 1f (1sEven(m)) m else m + n)(1)
{n: Int = 3,
1skEven = Closure(..),
1s0dd = Closure(..)}; ENV
1f (1sEven(m)) m else m + n,

{m: Int =1, n: Int = 3, ..}; ENV »*
1f (false) m else m + n,
{m: Int =1, n: Int = 3, ..}; ENV »

m + n
{m: Int = 1, n: Int
4, ENV

3, ..}; ENV ~

