
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Clarification on Homework
Assignments

• Really, there are no extensions

• The real world is no different than this

• We are not providing you with any substantial tests

• The real world is no different than this

• The specification in the homework assignment is not
debatable

• Constructive feedback for future iterations of the class is
always appreciated

Clarification on Homework
Assignments

• Ambiguous sections of the homework are open to your
interpretation

• Make a reasonable interpretation and document it

• You are not bound by subsequent conversations on
Piazza that clarify ambiguities

• We will make every attempt to clarify ambiguities in a
reasonable way

• Take instructions concerning file and package names
seriously

Lexical vs Dynamic Scoping
• The semantics of function application that we have

outlined is referred to as lexical scoping

• Early versions of Lisp avoided the need for closures:

• They reduced function applications by extending the
environment in which the application occurred

• This semantics of function application is known as
dynamic scoping

• Why is dynamic scoping problematic?

Additional Syntactic
Forms

Repeated Parameters
• Scala allows the last parameter to a function to

stand for zero or more arguments

• The arguments are placed into an Array of the
given type

 def squares(xs: Int*) =
 for (x <- xs)
 yield x*x

Repeated Parameters
• Scala allows the last parameter to a function to

stand for zero or more arguments

• The arguments are placed into an Array of the
given type

 squares(4,2,6,5,8)
squares()

 squares(4,2,6,8)
squares(3)

squares(4,3,7)

Repeated Parameters
• Scala allows the last parameter to a function to

stand for zero to many arguments

• The arguments are placed into an Array of the
given type

 def fnName(arg0, .., argN: Type*) =
 expr

Repeated Parameters
• If you have an array and you wish to pass it to a

repeated parameter, include the suffix :_*

squares(1,2,3,4,5) ↦
ArrayBuffer(1, 4, 9, 16, 25)

ArrayBuffers
• Buffers in Scala enable incremental creation of sequences

• Support destructive append, prepend, insert

• We have not talked about destructive operations yet

• Just pretend they are arrays for now

• Random access to elements

• ArrayBuffers are simply Buffers implemented using Arrays

Repeated Parameters
• If you have an array and you wish to pass it to a

repeated parameter, include the suffix :_*

val myArray = Array(1,2,3)
squares(myArray: _*)

Guidelines on Repeated
Parameters

• Use repeated parameters to provide factory methods for
collections classes

• Use repeated parameters for methods that map over an
immediately provided set of values

• Use repeated parameters for folds over an immediately
provided set of values

List(1,2,3,4,5)

squares(1,2,3,4,5)

sum(1,2,3,4,5)

Named Arguments
• With named arguments, the arguments to a

function can be passed in any order

• Each argument must be prefixed with the name of
the parameter and an equals sign:

def speed(distance: Double, time: Double) =
 distance/time

speed(time = 5.0, distance = 2.0)

Named Arguments
• If positional arguments are mixed with named

arguments, the positional arguments must come
first

def speed(distance: Double, time: Double) =
 distance/time

speed(2.0, time = 5.0)

Guidelines on Named
Arguments

• Named arguments add bulk to function applications

• Use when:

• There are multiple arguments of the same type

• It’s important which arguments correspond to which
parameters

• There is no natural order for the arguments

• The expected order of the arguments is difficult to
remember

Default Parameter Values
• Function parameters can include default values:

• The argument for a parameter with a default value can
be omitted at the call site:

case class Circle(radius: Double = 1) extends Shape {
 val pi = 3.14

 def area = { pi * radius * radius }
 def makeLikeMe(that: Shape): Circle = this
}

Circle()

Guidelines of Default
Parameter Values

• Consider default parameter values instead of static
overloading

• Use when there is a common argument value that
is usually used

• A default I/O source, file location, etc.

Call-By-Value
and

Call-By-Name

Call-By-Value

• Thus far, the evaluation semantics we have studied
(both with the substitution and environment
models) is known as call-by-value:

• To evaluate a function application, we first
evaluate the arguments and then evaluate the
function body

Call-By-Value

• We have seen several “special forms” where this
evaluation semantics is not what we want:

&& || if-else

Call-By-Value
• We could delay evaluation in these cases by

wrapping arguments in function literals that take no
parameters

 def myOr(left: Boolean, right: () => Boolean) =
 if (left) true
 else right()

Call-By-Value
• We could delay evaluation in these cases by

wrapping arguments in function literals that take no
parameters

• Functions that take no arguments are referred to as
thunks

myOr(true, () => 1/0 == 2) ↦ true

Call-By-Name

• Scala provides a way that we can pass arguments
as thunks without having to wrap them explicitly

We simply leave off the parentheses
in the parameter’s type

 def myOr(left: Boolean, right: => Boolean) =
 if (left) true
 else right()

Call-By-Name
• Now we can call our function without wrapping the

second argument in an explicit thunk:

• The thunk is applied (to nothing) the first time that
the argument is evaluated in a function

myOr(true, 1/0 == 2) ↦ true

Call-By-Name
• We can use by-name parameters to define new

control abstractions:

 def myAssert(predicate: => Boolean) =
 if (assertionsEnabled && !predicate)
 throw new AssertionError

Syntactic Sugar: Braces for
Passing Arguments

• Any function that takes a single argument can be
applied by passing the argument enclosed in
braces instead of parentheses

myAssert {
 2 + 2 == 4
}

Syntactic Sugar: Braces for
Passing Arguments

• Any function that takes a single argument can be
applied by passing the argument enclosed in
braces instead of parentheses

myAssert {
 def double(n: Int) = 2 * n
 double(2) == 4
}

Sequences of Cases

• Another way to write a function literal is to
immediately place a sequence of case clauses in
braces:

{
 case Some(x) => x
 case None => 0
}

Sequences of Cases
{
 case Some(x) => x
 case None => 0
}

_ match {
 case Some(x) => x
 case None => 0
}

is equivalent to

Scala Immutable
Collections

Immutable Lists

• Behave much like the lists we have defined in class

• Lists are covariant

• The empty list is written Nil

• Nil extends List[Nothing]

Immutable Lists

• The list constructor takes a variable number of
arguments:

List(1,2,3,4,5,6)

Immutable Lists

• Non-empty lists are built from Nil and Cons (written
as the right-associative operator ::)

1 :: 2 :: 3 :: 4 :: Nil

List Operations

• head returns the first element

• tail returns a list of elements but the first

• isEmpty returns true if the list is empty

• Many of the methods we have defined are available
on the built-in lists

FoldLeft and FoldRight Are
Written as Operators

• foldLeft:

• foldRight:

zero /: xs (op)

zero :\ xs (op)

SortWith

List(1,2,3,4,5,6) sortWith (_ < _)

Range

List.range(1,5)

Using Fill for Uniform Lists

List.fill(10)(0) ↦
List(0,0,0,0,0,0,0,0,0,0)

Using Fill for Uniform Lists

List.fill(3,3)(0) ↦

List(List(0,0,0),
 List(0,0,0),
 List(0,0,0))

Tabulating Lists

List.tabulate(3,3) (
 (m,n) => if (m == n) 1 else 0)
)
↦
List(List(1,0,0),
 List(0,1,0),
 List(0,0,1))

Immutable Sets

Immutable Sets

• Sets are unordered, unrepeated collections of
elements

• Sets are parametric and covariant in their element
type

Immutable Sets

Set(1,2,3,4,5)

Immutable Sets

Set(1,2,3) + 4 ↦
Set(1,2,3,4)

Immutable Sets

Set(1,2,3) - 2 ↦
Set(1,3)

Immutable Sets

Set(1,2,3) - 4 ↦
Set(1,2,3)

Immutable Sets

Set(1,2,3) ++ Set(2,4,5) ↦
Set(1,2,3,4,5)

Immutable Sets

Set(1,2,3) — Set(2,4,5,3) ↦
Set(1)

Immutable Sets

Set(1,2,3) & Set(2,4,5,3) ↦
Set(2,3)

Immutable Sets

Set(1,2,3).size ↦
3

Immutable Sets

Set(1,2,3).contains(2) ↦
true

Immutable Maps

Immutable Maps

• Maps are collections of key/value pairs

• They are parametric in both the key and value type

• Invariant in their key type

• Covariant in their value type

The -> Operator
• The infix operator -> returns a pair of its

arguments:

1 -> 2
↦

(1,2)

The -> Operator is Left
Associative

> 1 -> 2 -> 3 -> 4
res8: (((Int, Int), Int), Int) = (((1,2),3),4)

The Map Constructor

Map(“a” -> 1, “b” -> 2, “c” -> 3)
↦

Map(a -> 1, b -> 2, c -> 3)

Map Addition

Map(“a” -> 1, “b” -> 2, “c” -> 3) + (“d” -> 4)
↦

Map(a -> 1, b -> 2, c -> 3, d -> 4)

Map Operations

• The operators -, ++, —, map.size are defined
in the expected way

Map Addition

Map(“a” -> 1, “b” -> 2, “c” -> 3).contains(“b”)
↦

true

Map Addition

Map(“a” -> 1, “b” -> 2, “c” -> 3)(“c”)
↦
3

Map Addition

Map(“a” -> 1, “b” -> 2, “c” -> 3).keys
↦

Set(a, b, c)

Map Addition

Map(“a” -> 1, “b” -> 2, “c” -> 3).values
↦

Set(1,2,3)

Map Addition

Map(“a” -> 1, “b” -> 2, “c” -> 3).isEmpty
↦

false

Traits

Traits

• Traits provide a way to factor out common behavior
among multiple classes and mix it in where
appropriate

Trait Definitions
• Syntactically, a trait definition looks like a class

definition but with the keyword “trait”

trait Echo {
 def echo(message: String) =
 message
}

Trait Definitions
• Traits can declare fields and full method definitions

• They must not include constructors

trait Echo {
 val language = “Portuguese"
 def echo(message: String) =
 message
}

Using Traits
• Classes “mix in” traits using either the extends or
with keywords

class Parrot extends Echo {
 def fly() = {
 // forget to fly and talk instead
 echo(“poly wants a cracker”)
 }
}

Using Traits
• Classes “mix in” traits using either the extends or
with keywords

class Parrot extends Bird with Echo {
 def fly() = {
 // forget to fly and talk instead
 echo(“poly wants a cracker”)
 }
}

Using Traits
• Classes “mix in” traits using either the extends or
with keywords

trait Smart {
 def somethingClever() =
 “better a witty fool than a foolish wit”
}

Using Traits
• Classes can mix in multiple traits using either the
with keywords

class Parrot extends Bird with Echo
with Smart {
 def fly() = {
 // forget to fly and talk instead
 echo(somethingClever())
 }
}

