
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

General Functional
Programming vs Scala

• The vast majority of topics we have discussed are
relevant to any functional programming language:

• The Substitution and Environment Models

• The Design Recipe and Templates

• Abstract and Recursive Datatypes

• Arrow Types, First-Class Functions

• Continuations

General Functional
Programming vs Scala

• The vast majority of topics we have discussed are
relevant to any functional programming language:

• Parametric Polymorphism

• Covariance, Contravariance

• Monads

• Lexical vs. Dynamic Scoping

• Call-by-Value vs. Call-by-Name

More on Traits

Thin vs Rich Interfaces
• Traits provide a way to resolve the tension between

“thin” and “rich” interfaces:

• Thin interface: Include only essential methods in an
interface

• Good for implementors

• Rich interface: Include a rich set of methods in an
interface

• Good for clients

Thin vs Rich Interfaces

• With traits, we can define an interface to include
only a small number of essential methods, but then
include traits to build rich functionality based on the
essential methods

• Implementors win

• Clients win

Thin vs Rich Interfaces
• Consider our implementations of Interval, Rational,

Measurement

• We want to include all comparison operators on
them:

< <= >= >

• With traits, we could define just one operator <
and mix in a trait to define the rest in terms of <

Thin vs Rich Interfaces
case class Measurement(magnitude: BigDecimal,
 unit: PhysicalUnit)
extends Ordered[Measurement]

 def compare(that: Measurement) =
 val (u,m1,m2) = this.unit commonUnits that.unit
 (m1 * magnitude) - (m2 * that.magnitude)
 }
 …
}

Traits as Stackable Modifiers

abstract class IntMap {
 def insert(s: String, n: Int): IntMap
 def retrieve(s: String): Int
}

Traits as Stackable Modifiers
case class IntListMap(elements: List[(String,Int)] = Nil)
extends IntMap {

 def insert(s: String, n: Int): IntMap =
 IntListMap((s -> n) :: elements)

 def retrieve(s: String) = {
 def retrieve(xs: List[(String, Int)]): Int = {
 xs match {
 case Nil => throw new IllegalArgumentException(s)
 case (t, n) :: ys if (s == t) => n
 case y :: ys => retrieve(ys)
 }
 }
 retrieve(elements)
 }
}

Traits as Stackable Modifiers

trait Incrementing extends IntMap {
 abstract override def insert(s: String, n: Int) =
 super.insert(s, n + 1)
}

This super call depends on how the trait is
mixed into a particular class

Traits as Stackable Modifiers

trait Filtering extends IntMap {
 abstract override def insert(s: String, n: Int) = {
 if (n >= 0) super.insert(s, n)
 else this
 }
}

As does this one

Traits as Stackable Modifiers

> val m = new IntListMap() with Incrementing with Filtering
m: IntListMap with Incrementing with Filtering = IntListMap(List())

The order in which the traits are listed is important.
The trait furthest to the right is called first

Traits as Stackable Modifiers

> m.insert("a", -1)
res0: IntMap = IntListMap(List())

Traits as Stackable Modifiers

> res0.retrieve("a")
java.lang.IllegalArgumentException: a

Traits as Stackable Modifiers

> m.insert("a", 1)
res2: IntMap = IntListMap(List((a,2)))

Traits as Stackable Modifiers

> res2.retrieve("a")
res3: Int = 2

Traits as Stackable Modifiers

> val m = new IntListMap() with Filtering with Incrementing
m: IntListMap with Filtering with Incrementing = IntListMap(List())

Now we have reversed the order

Traits as Stackable Modifiers

> m.insert("a", -1)
res0: IntMap = IntListMap(List((a,0)))

Now the integer is incremented before filtering,
and so it passes the filter

Traits as Stackable Modifiers

> res0.retrieve("a")
res5: Int = 0

Traits vs Multiple
Inheritance

Traits vs Multiple Inheritance
• The key property of traits that distinguishes them

from multiple inheritance is linearization

• With traditional multiple inheritance, which
implementation of insert would be called:

class MyMap() extends IntListMap() with Filtering with Incrementing

new MyMap().insert("b",2)

Traits vs Multiple Inheritance

• With traits, the effect of a super call is determined
by the linearization of traits, which enables:

• Multiple trait implementation of the same method
to be called

• Multiple ways to compose the traits depending
on circumstances

Trait Linearization

• To linearize class C

• Linearize class D

• Extend with the linearization of T1, leaving out classes already
linearized

• Continue until extending with the linearization of TN, leaving out
classes already linearized

• Finally, extend with the body of class C

class C() extends D() with T1… with TN {
 …
}

Trait Linearization

class Furniture
trait Soft extends Furniture
trait Antique extends Furniture
trait Victorian extends Antique
class VictorianChair extends Furniture with Soft with Victorian

Trait Linearization
Any

AnyRef

Furniture

VictorianChair

Antique

Victorian Soft

Trait Linearization
Any

AnyRef

Furniture

VictorianChair

Antique

Victorian Soft

Trait Linearization
Any

AnyRef

Furniture

VictorianChair

Antique

Victorian Soft

Trait Linearization
Any

AnyRef

Furniture

VictorianChair

Antique

Victorian Soft

Guidelines on Using Traits

• Use concrete classes when the behavior is not
reused

• Use traits to capture behavior that is reused in
multiple, unrelated classes

• If clients will inherit the behavior, try to make it an
abstract class

Generative Recursion

Generative vs Structural
Recursion

• The functions we have studied to this point have
(mostly) followed a common pattern:

• Break into cases

• Decompose data into components

• Process components (usually recursively)

• Functions that follow this pattern are referred to as
structurally recursive functions

Generative vs Structural
Recursion

• Some problems are not amenable to solution by
recursive descent

• Instead, a deeper insight or “eureka” is required

• Often a result from mathematics or computer science
must be applied to discover important structure

• Consider Euclid’s Algorithm for GCD

• The discovery of these insights and construction of
solutions using them is the study of algorithms

Generative vs Structural
Recursion

• Typically the design of an algorithm distinguishes
two kinds of problems:

• Base cases (or trivially solvable cases)

• Problems that can be reduced to other problems
of the same form

• The design of algorithms using this approach is
referred to as generative recursion

Square Roots

• We would like to define a function sqrt that takes
a non-negative value of type Double and returns
the square root of that value

• There is no obvious way to apply structural
recursion to this problem

Newton’s Method

• We can use derivatives to find successively better
approximations to the zeroes of a real-valued
function:

f(x) = 0

Newton’s Method

• We start with some guess for a value of x

x0 = guess

Newton’s Method

• Then we construct a better approximation with the
following formula:

xn+1 = xn � f(xn)

f

0(xn)

Applying Newton’s Method
to Finding Square Roots

• We can view the process of finding the square root
of a number y as finding a solution to the equation:

x

2 = y

Applying Newton’s Method
to Finding Square Roots

• We can view the process of finding the square root
of a number y as finding a solution to the equation:

x

2 � y = 0

Applying Newton’s Method
to Finding Square Roots

• Equivalently, we want to find a zero to the function:

f(x) = x

2 � y

Newton’s Method

• Plugging in our function f:

xn+1 = xn � f(xn)

f

0(xn)

Newton’s Method

• Plugging in our function f:

xn+1 = xn � x

2
n � y

2xn

Newton’s Method

 def abs(x: Double) = if (x < 0) -x else x
 def square(x: Double) = x * x

Newton’s Method
• To encode Newton’s Method as an application of

generative recursion:

• We need to choose an initial guess

• We need to encode computation of the next
guess from our current guess

• We need to determine our base case

Newton’s Method

• For square roots:

• Our initial guess can be the parameter

• Our base case is that our current guess falls
within some tolerance of the true square root

Newton’s Method

 def next(guess: Double): Double =
 if (isGoodEnough(guess)) guess
 else next(guess - ((square(guess) - x) /
 (2 * guess)))

Newton’s Method

 val epsilon = 0.000000000000001

 def isGoodEnough(guess: Double) =
 abs(square(guess) - x) <= epsilon

Newton’s Method
 def sqrt(x: Double) = {
 val epsilon = 0.000000000000001

 def isGoodEnough(guess: Double) =
 abs(square(guess) - x) <= epsilon

 def next(guess: Double): Double =
 if (isGoodEnough(guess)) guess
 else next(guess - ((square(guess) - x) /
 (2 * guess)))

 next(x)
 }

Generalizing to an Arbitrary
Function

 def newtonsMethod(f: Double => Double) = {
 val epsilon = 0.000000000000001
 val delta = 0.000000001

 def isGoodEnough(guess: Double) = abs(f(guess)) <= epsilon

 def fPrime(x: Double) = (f(x + delta) - f(x)) / delta

 def next(guess: Double): Double = {
 if (isGoodEnough(guess)) guess
 else next(guess - f(guess) / fPrime(guess))
 }
 next(2)
 }

Generalizing to an Arbitrary
Function

> newtonsMethod((x: Double) => x*x - 2)
res1: Double = 1.414213562373095

> newtonsMethod((x: Double) => x*x*x - 1000)
res0: Double = 10.0

Not All Applications of
Newton’s Method Terminate

• Consider:

• An initial guess of 0.5 leads us to find the root of a
tangent with slope zero (which has no root!)

f(x) = x

2 � x

f

0(x) = 2x� 1

Not All Applications of
Newton’s Method Terminate

newtonsMethod((x: Double) => x*x - x) ↦ ⏊

Design Recipe for
Generative Recursion

• Data analysis and design

• Contract, purpose, header: Should now include
some description of how the function works

• Examples: Include examples that illustrate how the
function proceeds (not just input/output)

Design Recipe for
Generative Recursion

• Template:

• What is trivially solvable?

• We new sub-problems do we generate?

• How do we combine solutions to the sub-problems?

• Tests

• A termination argument

A Termination Argument
• With structural recursion, the computation follows

the structure of the data

• Because immutable data has no cycles, the
computation is certain to terminate

• With generative recursion, the sub-problems might
be as large as the original problem

• Thus, we should include an explicit argument that
the algorithm terminates

