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General Functional 
Programming vs Scala

• The vast majority of topics we have discussed are 
relevant to any functional programming language: 

• The Substitution and Environment Models 

• The Design Recipe and Templates 

• Abstract and Recursive Datatypes 

• Arrow Types, First-Class Functions 

• Continuations



General Functional 
Programming vs Scala

• The vast majority of topics we have discussed are 
relevant to any functional programming language: 

• Parametric Polymorphism 

• Covariance, Contravariance 

• Monads 

• Lexical vs. Dynamic Scoping 

• Call-by-Value vs. Call-by-Name



More on Traits



Thin vs Rich Interfaces
• Traits provide a way to resolve the tension between 

“thin” and “rich” interfaces: 

• Thin interface: Include only essential methods in an 
interface 

• Good for implementors 

• Rich interface: Include a rich set of methods in an 
interface 

• Good for clients



Thin vs Rich Interfaces

• With traits, we can define an interface to include 
only a small number of essential methods, but then 
include traits to build rich functionality based on the 
essential methods 

• Implementors win 

• Clients win



Thin vs Rich Interfaces
• Consider our implementations of Interval, Rational, 

Measurement 

• We want to include all comparison operators on 
them: 

<  <=  >=  >

• With traits, we could define just one operator < 
and mix in a trait to define the rest in terms of <



Thin vs Rich Interfaces
case class Measurement(magnitude: BigDecimal,
                       unit: PhysicalUnit) 
extends Ordered[Measurement]

  def compare(that: Measurement) = 
    val (u,m1,m2) = this.unit commonUnits that.unit
    (m1 * magnitude) - (m2 * that.magnitude)
  }
  …
}



Traits as Stackable Modifiers

abstract class IntMap {
  def insert(s: String, n: Int): IntMap
  def retrieve(s: String): Int
}



Traits as Stackable Modifiers
case class IntListMap(elements: List[(String,Int)] = Nil) 
extends IntMap {

  def insert(s: String, n: Int): IntMap = 
    IntListMap((s -> n) :: elements)

  def retrieve(s: String) = {
    def retrieve(xs: List[(String, Int)]): Int = {
      xs match {
        case Nil => throw new IllegalArgumentException(s)
        case (t, n) :: ys if (s == t) => n
        case y :: ys => retrieve(ys)
      }
    }
    retrieve(elements)
  }
}



Traits as Stackable Modifiers

trait Incrementing extends IntMap {
  abstract override def insert(s: String, n: Int) =    
    super.insert(s, n + 1)
}

This super call depends on how the trait is  
mixed into a particular class



Traits as Stackable Modifiers

trait Filtering extends IntMap {
  abstract override def insert(s: String, n: Int) = {
    if (n >= 0) super.insert(s, n)
    else this
  }
}

As does this one



Traits as Stackable Modifiers

> val m = new IntListMap() with Incrementing with Filtering
m: IntListMap with Incrementing with Filtering = IntListMap(List())

The order in which the traits are listed is important. 
The trait furthest to the right is called first



Traits as Stackable Modifiers

> m.insert("a", -1)
res0: IntMap = IntListMap(List())



Traits as Stackable Modifiers

> res0.retrieve("a")
java.lang.IllegalArgumentException: a



Traits as Stackable Modifiers

> m.insert("a", 1)
res2: IntMap = IntListMap(List((a,2)))



Traits as Stackable Modifiers

> res2.retrieve("a")
res3: Int = 2



Traits as Stackable Modifiers

> val m = new IntListMap() with Filtering with Incrementing
m: IntListMap with Filtering with Incrementing = IntListMap(List())

Now we have reversed the order



Traits as Stackable Modifiers

> m.insert("a", -1)
res0: IntMap = IntListMap(List((a,0)))

Now the integer is incremented before filtering, 
and so it passes the filter



Traits as Stackable Modifiers

> res0.retrieve("a")
res5: Int = 0



Traits vs Multiple 
Inheritance



Traits vs Multiple Inheritance
• The key property of traits that distinguishes them 

from multiple inheritance is linearization 

• With traditional multiple inheritance, which 
implementation of insert would be called: 

 

class MyMap() extends IntListMap() with Filtering with Incrementing

new MyMap().insert("b",2)



Traits vs Multiple Inheritance

• With traits, the effect of a super call is determined 
by the linearization of traits, which enables: 

• Multiple trait implementation of the same method 
to be called 

• Multiple ways to compose the traits depending 
on circumstances



Trait Linearization

• To linearize class C 

• Linearize class D 

• Extend with the linearization of T1, leaving out classes already 
linearized 

• Continue until extending with the linearization of TN, leaving out 
classes already linearized 

• Finally, extend with the body of class C 

class C() extends D() with T1… with TN {
   …
}



Trait Linearization

class Furniture
trait Soft extends Furniture
trait Antique extends Furniture
trait Victorian extends Antique
class VictorianChair extends Furniture with Soft with Victorian



Trait Linearization
Any

AnyRef

Furniture

VictorianChair

Antique

Victorian Soft
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Trait Linearization
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Guidelines on Using Traits

• Use concrete classes when the behavior is not 
reused  

• Use traits to capture behavior that is reused in 
multiple, unrelated classes 

• If clients will inherit the behavior, try to make it an 
abstract class



Generative Recursion



Generative vs Structural 
Recursion

• The functions we have studied to this point have 
(mostly) followed a common pattern: 

• Break into cases 

• Decompose data into components 

• Process components (usually recursively) 

• Functions that follow this pattern are referred to as 
structurally recursive functions



Generative vs Structural 
Recursion

• Some problems are not amenable to solution by 
recursive descent 

• Instead, a deeper insight or “eureka” is required 

• Often a result from mathematics or computer science 
must be applied to discover important structure 

• Consider Euclid’s Algorithm for GCD 

• The discovery of these insights and construction of 
solutions using them is the study of algorithms 



Generative vs Structural 
Recursion

• Typically the design of an algorithm distinguishes 
two kinds of problems: 

• Base cases (or trivially solvable cases) 

• Problems that can be reduced to other problems 
of the same form 

• The design of algorithms using this approach is 
referred to as generative recursion



Square Roots

• We would like to define a function sqrt that takes 
a non-negative value of type Double and returns 
the square root of that value 

• There is no obvious way to apply structural 
recursion to this problem



Newton’s Method

• We can use derivatives to find successively better 
approximations to the zeroes of a real-valued 
function: 

f(x) = 0



Newton’s Method

• We start with some guess for a value of x 

x0 = guess



Newton’s Method

• Then we construct a better approximation with the 
following formula: 

xn+1 = xn � f(xn)

f

0(xn)





































Applying Newton’s Method 
to Finding Square Roots

• We can view the process of finding the square root 
of a number y as finding a solution to the equation:

x

2 = y



Applying Newton’s Method 
to Finding Square Roots

• We can view the process of finding the square root 
of a number y as finding a solution to the equation:

x

2 � y = 0



Applying Newton’s Method 
to Finding Square Roots

• Equivalently, we want to find a zero to the function:

f(x) = x

2 � y



Newton’s Method

• Plugging in our function f:  

xn+1 = xn � f(xn)

f

0(xn)



Newton’s Method

• Plugging in our function f:  

xn+1 = xn � x

2
n � y

2xn



Newton’s Method

  def abs(x: Double) = if (x < 0) -x else x
  def square(x: Double) = x * x



Newton’s Method
• To encode Newton’s Method as an application of 

generative recursion: 

• We need to choose an initial guess  

• We need to encode computation of the next 
guess from our current guess 

• We need to determine our base case



Newton’s Method

• For square roots: 

• Our initial guess can be the parameter  

• Our base case is that our current guess falls 
within some tolerance of the true square root



Newton’s Method

    def next(guess: Double): Double = 
      if (isGoodEnough(guess)) guess
      else next(guess - ((square(guess) - x) / 
                        (2 * guess)))



Newton’s Method

    val epsilon = 0.000000000000001

    def isGoodEnough(guess: Double) = 
      abs(square(guess) - x) <= epsilon



Newton’s Method
  def sqrt(x: Double) = {
    val epsilon = 0.000000000000001

    def isGoodEnough(guess: Double) = 
      abs(square(guess) - x) <= epsilon
    
    def next(guess: Double): Double = 
      if (isGoodEnough(guess)) guess
      else next(guess - ((square(guess) - x) / 
                        (2 * guess)))
      
    next(x)
  }



Generalizing to an Arbitrary 
Function

  def newtonsMethod(f: Double => Double) = {
    val epsilon = 0.000000000000001
    val delta = 0.000000001
        
    def isGoodEnough(guess: Double) = abs(f(guess)) <= epsilon

    def fPrime(x: Double) = (f(x + delta) - f(x)) / delta
    
    def next(guess: Double): Double = {
      if (isGoodEnough(guess)) guess
      else next(guess - f(guess) / fPrime(guess))
    }
    next(2)
  }



Generalizing to an Arbitrary 
Function

> newtonsMethod((x: Double) => x*x - 2)
res1: Double = 1.414213562373095

> newtonsMethod((x: Double) => x*x*x - 1000)
res0: Double = 10.0



Not All Applications of 
Newton’s Method Terminate

• Consider: 

• An initial guess of 0.5 leads us to find the root of a 
tangent with slope zero (which has no root!) 

f(x) = x

2 � x

f

0(x) = 2x� 1



Not All Applications of 
Newton’s Method Terminate

newtonsMethod((x: Double) => x*x - x) ↦ ⏊



Design Recipe for 
Generative Recursion

• Data analysis and design 

• Contract, purpose, header: Should now include 
some description of how the function works 

• Examples: Include examples that illustrate how the 
function proceeds (not just input/output)



Design Recipe for 
Generative Recursion

• Template: 

• What is trivially solvable? 

• We new sub-problems do we generate? 

• How do we combine solutions to the sub-problems? 

• Tests 

• A termination argument



A Termination Argument
• With structural recursion, the computation follows 

the structure of the data 

• Because immutable data has no cycles, the 
computation is certain to terminate 

• With generative recursion, the sub-problems might 
be as large as the original problem 

• Thus, we should include an explicit argument that 
the algorithm terminates


