Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC

Frequency

10

Homework 2 Time Spent

10 20 30

Hours

40

Frequency

15

b
o

(&)

Homework 2 Completed

0.0

0.2 0.4 0.6 0.8

No/Yes

1.0

Frequency

10

Homework 2 More Time Needed

Hours

15

Frequency

10

Homework 2 Workload

Frequency

10

Homework 2 Helpful

Frequency

10

Homework 2 Enjoyable

Frequency

10

Lectures Easy to Follow

Frequency

10

Course Pace

Frequency

10

Class Enjoyable

GGeneral Functional
Programming vs Scala

* [he vast majority of topics we have discussed are
relevant to any functional programming language:

e The Substitution and Environment Models
 [he Design Recipe and Templates
e Abstract and Recursive Datatypes
* Arrow Types, First-Class Functions

e Continuations

GGeneral Functional
Programming vs Scala

* [he vast majority of topics we have discussed are
relevant to any functional programming language:

e Parametric Polymorphism

e Covariance, Contravariance
« Monads

* | exical vs. Dynamic Scoping

» Call-by-Value vs. Call-by-Name

More on lraits

Thin vs Rich Interfaces

e Jraits provide a way to resolve the tension between
‘thin” and “rich” intertaces:

* Thin interface: Include only essential methods in an
INnterface

* Good for implementors

e Rich interface: Include a rich set of methods in an
interface

e Good for clients

Thin vs Rich Interfaces

o With traits, we can define an interface to include
only a small number of essential methods, but then

include traits to build rich functionality based on the
essential methods

* Implementors win

e Clients win

Thin vs Rich

INnterfaces

e Consider our implementations of Interval, Rational,

Measurement

 We want to include all comparison operators on

them:

< <=

>= >

* With traits, we could define just one operator <

and mix in a trait to defi

ne the rest in terms of <

Thin vs Rich Interfaces

case class Measurement(magnitude: BigDecimal,
unit: PhysicalUnit)
extends Ordered[Measurement]

def compare(that: Measurement) =
val Cu,ml,m2) = this.unit commonUnits that.unit
(ml * magnitude) - (m2 * that.magnitude)

¥

Traits as Stackable Modifiers

abstract class IntMap {
def insert(s: String, n: Int): IntMap
def retrieve(s: String): Int

¥

Traits as Stackable Modifiers

case class IntListMap(elements: List[(String,Int)] = Nil)
extends IntMap {

def insert(s: String, n: Int): IntMap =
IntListMap((s -> n) :: elements)

def retrieve(s: String) = {
def retrieve(xs: List[(String, Int)]): Int = {

xs match {
case N1l => throw new IllegalArgumentException(s)

case (t, n) :: ys 1f (s == t) => n
case y :: ys => retrieve(ys)
3
¥

retrieve(elements)

Traits as Stackable Modifiers

trait Incrementing extends IntMap {
abstract override def insert(s: String, n: Int) =
super.insert(s, n + 1)

} \
This super call depends on how the trait is
mixed into a particular class

Traits as Stackable Modifiers

trait Filtering extends IntMap {
abstract override def insert(s: String, n: Int) = {
1f (n >= @) super.insert(s, n)
else this
ks
ks

As does this one

Traits as Stackable Modifiers

> val m = new IntListMap() with Incrementing with Filtering
m: IntListMap with Incrementing/with Filtering = IntListMap(List())

The order in which the traits are listed is important.
The trait furthest to the right is called first

Traits as Stackable Modifiers

> m.insert("a", -1)
res@: IntMap = IntListMap(List())

Traits as Stackable Modifiers

> res@.retrieve("a")
java.lang.IllegalArgumentException: a

Traits as Stackable Modifiers

> m.insert("a", 1)
resZ2: IntMap = IntListMap(List((a,2)))

Traits as Stackable Modifiers

> resZ2.retrieve("a")
res3: Int = 2

Traits as Stackable Modifiers

> val m = new IntListMap() with Filtering with Incrementing
m: IntListMap with Filtering with Incrementing = IntListMap(List())

Now we have reversed the order

Traits as Stackable Modifiers

> m.insert("a", -1)
res@: IntMap = IntListMap(List((a,0)))

/

Now the integer is incremented before filtering,
and so it passes the filter

Traits as Stackable Modifiers

> res@.retrieve("a")
resS5: Int = 0

Traits vs Multiple
INnheritance

Traits vs Multiple Inheritance

* [he key property of traits that distinguishes them
from multiple inheritance is linearization

« With traditional multiple inheritance, which
implementation of insert would be called:

class MyMap() extends IntListMap() with Filtering with Incrementing

new MyMap().1insert("b",2)

Traits vs Multiple Inheritance

o With traits, the effect of a super call is determined
by the linearization of traits, which enables:

* Multiple trait implementation of the same method
to be called

 Multiple ways to compose the traits depending
on circumstances

Tralt Linearization

class C() extends D() with Tl1.. with TN {

¥

e To linearize class C
e Linearize class D

e Extend with the linearization of T1, leaving out classes already
inearized

« Continue until extending with the linearization of TN, leaving out
classes already linearized

* Finally, extend with the body of class C

Tralt Linearization

class Furniture

trait Soft extends Furniture

trait Antique extends Furniture

trait Victorian extends Antique

class VictorianChair extends Furniture with Soft with Victorian

Tralt Linearization

Any
AnyRet

Antique T
Furniture

Victorian Soft

VictorianChair

Tralt Linearization

Any
AnyRet

Antique T
Furniture

Victorian Soft

VictorianChair

Tralt Linearization

Any
t|
AnyRetf
Antique f T
Furnjture

/

Victorian Soft

VictorianChair

Tralt Linearization

Any
AtJRef
1

Antique

Victorian

. VictorianChair

Guidelines on Using Traits

e Use concrete classes when the behavior 1s not
reused

e Use traits to capture behavior that is reused In
multiple, unrelated classes

 |f clients will inherit the behavior, try to make it an
abstract class

(Generative Recursion

GGenerative vs Structural
Recursion

* The functions we have studied to this point have
(mostly) followed a common pattern:

* Break into cases
« Decompose data into components
* Process components (usually recursively)

* Functions that follow this pattern are reterred to as
structurally recursive functions

GGenerative vs Structural
Recursion

 Some problems are not amenable to solution by
recursive descent

* |Instead, a deeper insight or “eureka” is required

e Often a result from mathematics or computer science
must be applied to discover important structure

* Consider Euclid’'s Algorithm for GCD

* The discovery of these insights and construction of
solutions using them is the study of algorithms

GGenerative vs Structural
Recursion

e Jypically the design of an algorithm distinguishes
two kinds of problems:

 Base cases (or trivially solvable cases)

* Problems that can be reduced to other problems
of the same form

* [he design of algorithms using this approach is
referred to as generative recursion

Sqguare Roots

* We would like to define a function sgrt that takes

a non-negative value of type Double and returns
the square root of that value

* [here is no obvious way to apply structural
recursion to this problem

Newton's Method

 We can use derivatives to find successively better
approximations to the zeroes of a real-valued
function:

flz) =0

Newton's Method

* \We start with some guess for a value of X

ro = guess

Newton's Method

 Then we construct a better approximation with the
following formula:

T T ()
mn

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

3) d d
_]lI[IlIlIIIIlII
L L] L] L]

> ‘=

» X

Funktion
Tangente

3) d d
_II[IIIIIIIIIII
L L] L] L]

> ‘=

» X

Funktion
Tangente

L 4 '
_1[1[111111111
] | |

> ‘=

» X

Funktion
Tangente

> ‘=

» X

) d d
I i e — — — — — - — -
L 1 1

Funktion
Tangente

> ‘=

» X

) d d
I i - - - — -
L] 1 1

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

d d
e T T T T T T 1
1 1

> ‘=

» X

d d
i s s o D D D 0 W
1 1

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

> ‘=

» X

Funktion
Tangente

Applying Newton's Methoo
to Finding Square Roots

* We can view the process of finding the square root
of a number y as finding a solution to the equation:

L =Y

Applying Newton's Methoo
to Finding Square Roots

* We can view the process of finding the square root
of a number y as finding a solution to the equation:

r"—y=20

Applying Newton's Methoo
to Finding Square Roots

 Equivalently, we want to find a zero to the function:

flz) =2 —y

Newton's Method

* Plugging in our function f:

T

Newton's Method

* Plugging in our function f:

2
Lo — Y

22,

Lnt+l — Ln

Newton's Method

def abs(x: Double) = 1f (X < 0) -x else Xx
def square(x: Double) = x * x

Newton's Method

* Jo encode Newton's Method as an application of
generative recursion:

* We need to choose an initial guess

 We need to encode computation of the next
guess from our current guess

e \We need to determine our base case

Newton's Method

* For square roots:
* Our initial guess can be the parameter

* Our base case is that our current guess falls
within some tolerance of the true square root

Newton's Method

def next(guess: Double): Double =
1t (1sGoodEnough(guess)) guess
else next(guess - ((square(guess) - x) /

(2 * guess)))

Newton's Method

val epsilon = 0.000000000000001

def 1sGoodEnough(guess: Double) =
abs(square(guess) - xX) <= epsilon

Newton's Method

def sgrt(x: Double) = {
val epsilon = 0.000000000000001

def 1sGoodEnough(guess: Double) =
abs(square(guess) - x) <= epsilon

def next(guess: Double): Double =
1t (1sGoodEnough(guess)) guess
else next(guess - ((square(guess) - x) /

(2 * guess)))

next(x)
}

Generalizing to an Arbitrary
Function

def newtonsMethod(f: Double => Double) = {
val epsilon = 0.000000000000001
val delta = 0.000000001

def 1sGoodEnough(guess: Double) = abs(f(guess)) <= epsilon
def fPrime(x: Double) = (f(x + delta) - f(x)) / delta

def next(guess: Double): Double = {
1f (1sGoodEnough(guess)) guess
else next(guess - f(guess) / fPrime(guess))

¥
next(2)

Generalizing to an Arbitrary
Function

> newtonsMethod((x: Double) => x*x - 2)
resl: Double = 1.414213562373095

> newtonsMethod((x: Double) => x*x*x - 1000)
res@: Double = 10.0

Not All Applications of
Newton's Method Terminate

e Consider:

e An initial guess of 0.5 leads us to find the root of a
tangent with slope zero (which has no root!)

Not All Applications of
Newton's Method Terminate

newtonsMethod((x: Double) => x*x - x) » |

Design Recipe for
Generative Recursion

 Data analysis and design

o Contract, purpose, header: Should now include
some description of how the function works

 Examples: Include examples that illustrate how the
function proceeds (not just input/output)

Design Recipe for
Generative Recursion

* [emplate:

 What is trivially solvable?

* \We new sub-problems do we generate”

« How do we combine solutions to the sub-problems?
e Jests

e A termination argument

A lermination Argument

e With structural recursion, the computation follows
the structure of the data

 Because immutable data has no cycles, the
computation is certain to terminate

* With generative recursion, the sub-problems might
be as large as the original problem

* Thus, we should include an explicit argument that
the algorithm terminates

