
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

How to Decide Between Structural
and Generative Recursion

• Structural recursion is typically:

• Easier to design

• Easier to understand

• Generative recursion can be faster (sometimes!)

How to Decide Between Structural
and Generative Recursion

• As a general guideline:

• Start with structural recursion

• If it turns out to be too slow:

• Explore generatively recursive approaches

Strategies for
Generative Recursion

Binary Search
• The strategy of searching over a sequence by

breaking in half and searching over just one of
them

• Our search for blue-eyed ancestors falls into this
category

• We could also use binary search for root finding

• Newton’s Method could be viewed as an
optimization on binary search for root finding

Divide and Conquer

• The strategy of breaking a problem into smaller
sub-problems of the same type

• Quicksort falls into this category

Quicksort
 def quickSort(xs: List[Int]): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val (smaller, larger) = separate(xs, x)
 quickSort(smaller) ++
 List(x) ++
 quickSort(larger)
 }
 }
 }

Quicksort
 def quickSort(xs: List[Int]): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val (smaller, larger) = separate(xs, x)
 quickSort(smaller) ++
 List(x) ++
 quickSort(larger)
 }
 }
 }

Trivially solvable

Quicksort
 def quickSort(xs: List[Int]): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val (smaller, larger) = separate(xs, x)
 quickSort(smaller) ++
 List(x) ++
 quickSort(larger)
 }
 }
 }

Sub-problems

Quicksort
 def quickSort(xs: List[Int]): List[Int] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val (smaller, larger) = separate(xs, x)
 quickSort(smaller) ++
 List(x) ++
 quickSort(larger)
 }
 }
 }

Combination

Separate

def separate(xs: List[Int], x: Int): (List[Int], List[Int]) = {
 xs match {
 case Nil => (Nil, Nil)
 case y :: ys => {
 val (smaller, larger) = separate(ys, x)
 if (y < x) (y :: smaller, larger)
 else (smaller, y :: larger)
 }
 }
}

Description and Termination
Argument

 /**
 * Recurs on two sublists of the given list:
 * All elements smaller than a given “pivot”
 * All elements at least as large as the pivot
 * Appends the recursive solutions.
 * Because each sublist is strictly smaller
 * (the pivot was extracted from the list),
 * we eventually recur on an empty list.
 */
 def quickSort(xs: List[Int]): List[Int] = {
 …
 }

Backtracking
Algorithms

Graph Algorithms
• Many problems can be expressed as traversals or

computations over graphs

• Travel planning

• Circuit design

• Social networks

• etc.

Graph Algorithms

• We consider the problem of finding a path from one
vertex to another in a graph

Data Analysis and Design
• We model graphs as Maps of Strings to Lists of

Strings

class Graph(elements: (String, List[String])*)
extends Function1[String, List[String]] {
 val _elements = Map(elements:_*)
 def apply(s: String) = _elements(s)
}

Data Analysis and Design
• We model graphs as Maps of Strings to Lists of

Strings

 val sampleGraph =
 new Graph ("A" -> List("E", "B"),
 "B" -> List("A"),
 "C" -> List("D"),
 "D" -> List(),
 "E" -> List("C", "F"),
 "F" -> List("A", "G"),
 "G" -> List())

What is a Trivially Solvable
Problem?

• If the start and end vertices are identical

How Do We Generate Sub-
Problems?

• Find nodes connected to start and recur

How Do We Relate the
Solutions?

• We need only find one solution; no need to
combine multiple solutions

Contract Attempt 1

/**
 * Create a path from start to finish in G
 */
def findRoute(start: String, end: String,
 graph: Graph): List[String]

But what if there is no path?

Options

• Often the result of a computation is that no
satisfactory value could be found

• Lookup in a table with a key that does not exist

• Attempting to find a path that does not exist

Scala Options

abstract class Option[+A] {…}

object None extends Option[Nothing] {…}

class Some[+A](val contained: A) extends Option[A] {
 …
}

Options Are Monads!

abstract class Option[+A] {
 def flatMap[B](f: (A) ⇒ Option[B]): Option[B]
 def map[B](f: (A) ⇒ B): Option[B]
 def withFilter(p: (A) ⇒ Boolean):
 FilterMonadic[A, collection.Iterable[A]]
}

http://www.scala-lang.org/api/current/scala/Boolean.html
http://www.scala-lang.org/api/current/scala/collection/generic/FilterMonadic.html
http://www.scala-lang.org/api/current/scala/collection/Iterable.html

Contract Attempt 2
/**
 * Create a path from start to finish in G, if
 * it exists.
 */
def findRoute(start: String, end: String,
 graph: Graph):
 Option[List[String]]

Reduce to Backtracking
Cases

 def findRoute(start: String, end: String,
 graph: Graph): Option[List[String]] = {
 if (start == end) Some(List(end))
 else for (route <- routeFromOrigins(graph(start), end, graph))
 yield start :: route
 }

Recursive Sub-Problems
 def routeFromOrigins(origins: List[String], destination: String,
 graph: Graph): Option[List[String]] = {
 origins match {
 case Nil => None
 case origin :: origins => {
 findRoute(origin, destination, graph) match {
 case None => routeFromOrigins(origins, destination,graph)
 case Some(route) => Some(route)
 }
 }
 }
 }

Termination

• routeFromOrigins is structurally recursive:

• It terminates provided that findRoute terminates

• But findRoute terminates only if there are no
cycles in the graph it traverses

Accumulating
Knowledge

Accumulating Knowledge

• In recursive calls, we need to remember what
nodes we have already visited, so we can prevent
infinite regress

• We pass this information to recursive calls via an
additional “accumulator” parameter

Reduce to Backtracking
Cases

 def findRoute(start: String, end: String, graph: Graph,
 visited: List[String] = Nil):
 Option[List[String]] = {
 if (start == end) Some(List(end))
 else if (visited contains start) None
 else for (route <- routeFromOrigins(graph(start), end, graph,
 start :: visited))
 yield start :: route
 }

Reduce to Backtracking
Cases

 def routeFromOrigins(origins: List[String], destination: String,
 graph: Graph, visited: List[String] = Nil):
 Option[List[String]] = {
 origins match {
 case Nil => None
 case origin :: origins => {
 findRoute(origin, destination, graph, visited) match {
 case None => routeFromOrigins(origins, destination,
 graph, origin :: visited)
 case Some(route) => Some(route)
 }
 }
 }
 }

Accumulators
• Keeping an accumulator parameter allows us to

“remember” knowledge from one recursive call to
another

• Often essential for correctness in generative
recursion

• Also useful for saving space in structural
recursion

Accumulators for Structural
Recursion

• Let us define a function relativeToAbsolute,
which:

• Takes a list of Double values, with each value
denoting a relative distance to the point to its left

• Returns a list of Double values denoting the
absolute distances to the origin

Accumulators for Structural
Recursion

2 3 5 2 8

2 5 10 12 20

becomes

Defining relativeToAbsolute

 def relativeToAbsolute[T](xs: List[T]) = {
 xs match {
 case Empty => Empty
 case x :: xs => x :: relativeToAbsolute(map(_ + x)(xs))
 }
 }

Defining relativeToAbsolute
 def relativeToAbsolute(xs: List[Double]): List[Double] = {
 xs match {
 case Nil => Nil
 case x :: xs => x :: relativeToAbsolute {
 for (x1 <- xs) yield x + x1
 }
 }
 }

How many steps does it take to compute an application
of relativeToAbsolute, in comparison to the length of the list?

The Cost of
relativeToAbsolute

relativeToAbsolute(List(2,3,5,2,8)) ↦
 List(2,3,5,2,8) match {
 case Empty => Empty
 case x :: xs => x :: relativeToAbsolute(map(_ + x)(xs))
 } ↦
2 :: relativeToAbsolute(map(_ + 2)(List(3,5,2,8)) ↦*
2 :: relativeToAbsolute(5 :: map(_ + 2)(List(5,2,8)) ↦*
2 :: relativeToAbsolute(5 :: 7 :: map(_ + 2)(List(2,8)) ↦*
2 :: relativeToAbsolute(5 :: 7 :: 4 :: map(_ + 2)(List(8)) ↦*
2 :: relativeToAbsolute(5 :: 7 :: 4 :: 10 :: map(_ + 2)(List())↦*
2 :: relativeToAbsolute(5 :: 7 :: 4 :: 10 :: Nil) ↦ *
…

The cost of
relativeToAbsolute

• Each recursive call requires a map over the
argument list, which takes n steps for a list of
length n

nX

i=1

i =
(n)(1 + n)

2
= O(n2)

Big O Notation
• We say:

• To mean that there is a constant k and some value x0
such that

f(x) = O(g(x)) as x ! 1

|f(x)|  k|g(x)| for all x � x0

Big O Notation
• Typically the part:

• is implicit

• Effectively, we are defining equivalence classes of
functions

as x ! 1

Accumulating Distance to
the Origin

• We could reduce the time taken by instead
accumulating the distance to the origin in a
parameter

Accumulating Distance to
the Origin

 def relativeToAbsolute(xs: List[Double]) = {
 def inner(xs: List[Double], distanceToOrigin: Double):
 List[Double] = {
 xs match {
 case Nil => Nil
 case x :: xs => {
 val xToOrigin = x + distanceToOrigin
 xToOrigin :: inner(xs, xToOrigin)
 }
 }
 }
 inner(xs, 0)
 }

Guidelines for Using
Accumulators in Functions

• Start with the standard design recipes!

• Add an accumulator only after the initial design
attempt

Guidelines for Using
Accumulators in Functions

• Recognize the benefit to the function of having an
accumulator

• Understand what the accumulator denotes

• If the function is structurally recursive and uses an
auxiliary function, consider an accumulator

• Study hand evaluations to see if an accumulator
helps in reducing time or space costs

Recognizing the Benefit of
an Accumulator

Recognizing the Benefit of
an Accumulator

 def invert[T](xs: List[T]): List[T] = {
 xs match {
 case Nil => Nil
 case x :: xs => makeLastItem(x, invert(xs))
 }
 }

 def makeLastItem[T](x: T, xs: List[T]): List[T] = {
 xs match {
 case Nil => List(x)
 case y :: ys => y :: makeLastItem(x, ys)
 }
 }

Recognizing the Benefit of
an Accumulator

• There is nothing for invert to forget

• However, we might consider accumulating the
items walked over

Recognizing the Benefit of
an Accumulator

 def invert[T](xs: List[T]): List[T] = {
 def inner(xs: List[T], accumulator: List[T]): List[T] = {
 xs match {
 case Nil => …
 case y :: ys => … inner(… ys … y … accumulator …)
 }
 }
 inner(xs, Nil)
 }

Recognizing the Benefit of
an Accumulator

• The accumulator must stand for a list

• Maybe it could stand for all elements that precede
xs

Recognizing the Benefit of
an Accumulator

 def invert[T](xs: List[T]): List[T] = {
 def inner(xs: List[T], accumulator: List[T]): List[T] = {
 xs match {
 case Nil => …
 case y :: ys => … inner(… ys … y :: accumulator)
 }
 }
 inner(xs, Nil)
 }

Recognizing the Benefit of
an Accumulator

• Now it is clear that the accumulator contains all the
elements that precede xs in reverse order

Recognizing the Benefit of
an Accumulator

 def invert[T](xs: List[T]): List[T] = {
 def inner(xs: List[T], accumulator: List[T]): List[T] = {
 xs match {
 case Nil => accumulator
 case y :: ys => inner(ys, y :: accumulator)
 }
 }
 inner(xs, Nil)
 }

Recognizing the Benefit of
an Accumulator

• The key step in the design process is to establish
the invariant that describes the relationship
between the accumulator and the parameters of a
function

• Establish appropriate accumulator invariant is an
art that takes practice

Recognizing the Benefit of
an Accumulator

 def sum1(xs: List[Int]): Int = {
 xs match {
 case Nil => 0
 case y :: ys => y + sum1(ys)
 }
 }

An Accumulator for Sum

• We are walking over the elements of a list to return
their sum

• The most obvious thing to accumulate is the value
of the sum so far

An Accumulator for Sum

 def sum2(xs: List[Int]): Int = {
 def inner(xs: List[Int], accumulator: Int): Int = {
 xs match {
 case Nil => …
 case y :: ys => …inner(…ys … y + accumulator)
 }
 }
 inner(xs, 0)
 }

An Accumulator for Sum

 def sum2(xs: List[Int]): Int = {
 def inner(xs: List[Int], accumulator: Int): Int = {
 xs match {
 case Nil => accumulator
 case y :: ys => inner(ys, y + accumulator)
 }
 }
 inner(xs, 0)
 }

An Accumulator for Sum
sum1(List(5, 3, 7, 9)) ↦*
5 + sum1(List(3, 7, 9)) ↦*
5 + 3 + sum1(List(7, 9)) ↦*
5 + 3 + 7 + sum1(List(9)) ↦*

5 + 3 + 7 + 9 + sum1(List()) ↦*
5 + 3 + 7 + 9 + 0 ↦

8 + 7 + 9 + 0 ↦
15 + 9 + 0 ↦

24 + 0 ↦
24

An Accumulator for Sum
sum2(List(5, 3, 7, 9)) ↦*

inner(List(5, 3, 7, 9), 0) ↦*
inner(List(3, 7, 9), 5 + 0) ↦*

inner(List(3, 7, 9), 5) ↦*
inner(List(7, 9), 5 + 3) ↦*

inner(List(7, 9), 8) ↦*
inner(List(9), 7 + 8) ↦*
inner(List(9), 15) ↦*

inner(List(), 9 + 15) ↦*
inner(List(), 24) ↦*

24

An Accumulator for Sum
• The key advantage of our accumulator version of

sum is space

• The advantage is not a matter as to whether the
space is used on the stack or in the heap as an
argument!

• The ability to reduce the sum as we recur is the
primary cause of space savings

This Would Not Save Space

 def sum3(xs: List[Int]): Int = {
 def inner(xs: List[Int], accumulator: () => Int): Int = {
 xs match {
 case Nil => accumulator()
 case y :: ys => inner(ys, () => (y + accumulator()))
 }
 }
 inner(xs, () => 0)
 }

