Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC

How to Decide Between Structural
and Generative Recursion

e Structural recursion is typically:
* Easier to design
* Easler to understand

* (Generative recursion can be faster (sometimes!)

How to Decide Between Structural
and Generative Recursion

* As a general guideline:
e Start with structural recursion
e |fitturns out to be too slow:

 Explore generatively recursive approaches

Strategies for
GGenerative Recursion

Binary Search

The strategy of searching over a sequence by
breaking in half and searching over just one of
them

Our search for blue-eyed ancestors talls into this
category

We could also use binary search for root finding

Newton's Method could be viewed as an
optimization on binary search for root finding

Divide and Conqguer

* [he strategy of breaking a problem into smaller
sub-problems of the same type

* Quicksort falls into this category

Quicksort

def quickSort(xs: List[Int]): List[Int] = {
xs match {
case N1l => N1l
case X :: Xs => {

val (smaller, larger) = separate(xs, Xx)
quickSort(smaller) ++
List(x) ++
quickSort(larger)
¥
¥
}

Quicksort

def quickSort(xs: List[Int]): List[Int] = {
xs match {

case N1l => Nil

case X :2\Xs => {
val (smalter, larger) = separate(xs, Xx)
quickSort(smagller) ++
List(x) ++
quickSort(larger
¥
} Trivially solvable

¥

Quicksort

def quickSort(xs: List[Int]): List[Int] = {
xs match {

case Nil => Nil
case X :: XS => {

val (smaller, larger) = separate(xs, Xx)
quickSort(smaller) ++

List(X) ++
quickSort(larg
¥

Sub-problems
}
¥

Quicksort

def quickSort(xs: List[Int]): List[Int] = {
xs match {

case N1l => N1l
case X :: Xs => {
val (smaller, larger) = separate(xs, Xx)
quickSort(smaller) ++
List(x) ++
quickSort(larger)
¥

} Combination

¥

Separate

def separate(xs: List[Int], x: Int): (List[Int], List[Int]) = {
xs match {
case N1l => (Nil, Nil)
case y :: ys => {
val (smaller, larger) = separate(ys, x)
1f (y < x) (y :: smaller, larger)
else (smaller, y :: larger)
ks
ks
¥

Description and lermination
Argument

/**

Recurs on two sublists of the given list:
All elements smaller than a given “pivot”
All elements at least as large as the pivot

Appends the recursive solutions.

Because each sublist 1s strictly smaller

(the pivot was extracted from the list),

we eventually recur on an empty list.

¥ K K K ¥ ¥ %

*/
def quickSort(xs: List[Int]): List[Int] = {

} ..

Backtracking
Algorithms

Graph Algorithms

 Many problems can be expressed as traversals or
computations over graphs

* Jravel planning
e Circuit design
* Social networks

* elC.

Graph Algorithms

 We consider the problem of finding a path from one
vertex to another in a graph

Data Analysis and Design

* \We model graphs as Maps of Strings to Lists of
Strings

class Graph(elements: (String, List[String])*)
extends Functionl[String, List[String]] {

val _elements = Map(elements:_*)

def apply(s: String) = _elements(s)

¥

Data Analysis and Design

* \We model graphs as Maps of Strings to Lists of
Strings

val sampleGraph =

new Graph ("A" -> List("E", "B"),
"B" -> List("A"),
"C" -> List("D"),
"D" -> List(),
"E" -> List(C"C", "F"),
"F" -> List("A", "G"),
"G" -> List())

What is a Trivially Solvable
Problem?

e |f the start and end vertices are identical

How Do We Generate Sub-
Problems”

* FInd nodes connected to start and recur

How Do We Relate the
Solutions?

 We need only find one solution; no need to
combine multiple solutions

Contract Attempt 1

/**
* Create a path from start to finish 1n G
*/
def findRoute(start: String, end: String,
graph: Graph): List[String]

But what if there is no path?

Options

e Often the result of a computation is that no
satistactory value could be found

 Lookup In a table with a key that does not exist

e Attempting to find a path that does not exist

Scala Options

abstract class Option[+A] {..}
object None extends Option[Nothing] {..}

class Some[+A](val contained: A) extends Option[A] {

, ..

Options Are Monads!

abstract class Option[+A] {
def flatMap[B](f: (A) = Option[B]): Option[B]

def map[B](f: (A) = B): Option[B]

def withFilter(p: (A) = Boolean):
FilterMonadic[A, collection.Iterable[A]]

http://www.scala-lang.org/api/current/scala/Boolean.html
http://www.scala-lang.org/api/current/scala/collection/generic/FilterMonadic.html
http://www.scala-lang.org/api/current/scala/collection/Iterable.html

Contract Attempt 2

/**
* Create a path from start to finish in G, 1f
* 1t exists.
*/
def findRoute(start: String, end: String,
graph: Graph):
Option[List[String]]

Reduce to Backtracking
Cases

def findRoute(start: String, end: String,
graph: Graph): Option[List[String]] = {
1f (start == end) Some(List(end))
else for (route <- routeFromOrigins(graph(start), end, graph))
yield start :: route

Recursive Sub-Problems

def routeFromOrigins(origins: List[String], destination: String,
graph: Graph): Option[List[String]] = {
origins match {
case N1l => None
case origiln :: origins => {
findRoute(origin, destination, graph) match {

case None => routeFromOrigins(origins, destination,graph)
case Some(route) => Some(route)

¥
¥
¥
¥

Termination

* routeFromOrigins is structurally recursive:

e |t terminates provided that findRoute terminates

« But f1ndRoute terminates only if there are no
cycles in the graph it traverses

Accumulating
Knowledge

Accumulating Knowledge

 |n recursive calls, we need to remember what
nodes we have already visited, so we can prevent
Infinite regress

* We pass this information to recursive calls via an
additional "accumulator” parameter

Reduce to Backtracking
Cases

def findRoute(start: String, end: String, graph: Graph,
visited: List[String] = Nil):

Option[List[String]] = {

1f (start == end) Some(List(end))

else 1f (visited contains start) None

else for (route <- routeFromOrigins(graph(start), end, graph,

start :: visited))
yield start :: route

Reduce to Backtracking
Cases

def routeFromOrigins(origins: List[String], destination: String,
graph: Graph, visited: List[String] = Nil):
Option[List[String]] = {
origins match {
case N1l => None
case origin :: origins => {
findRoute(origin, destination, graph, visited) match {
case None => routeFromOrigins(origins, destination,
graph, origin :: visited)
case Some(route) => Some(route)
¥
3
h
¥

Accumulators

 Keeping an accumulator parameter allows us to
‘remember” knowledge from one recursive call to
another

* Often essential for correctness in generative
recursion

* Also useful for saving space in structural
recursion

Accumulators for Structural
Recursion

e | et us define a function relativeToAbsolute,
which:

» Takes a list of Double values, with each value
denoting a relative distance to the point to its left

* Returns a list of Double values denoting the
absolute distances to the origin

Accumulators for Structural
Recursion

Defining relative ToAbsolute

def relativeToAbsolute[T](xs: List[T]) = {
XS match {
case Empty => Empty
case X :: XS => X :: relativeToAbsolute(map(_ + x)(Xxs))
¥
¥

Defining relative ToAbsolute

def relativeToAbsolute(xs: List[Double]): List[Double] = {
xs match {
case N1l => N1l
case X :: XS => X :: relativeToAbsolute {
for (x1 <- xs) yield x + x1

¥
¥
¥

How many steps does it take to compute an application
of relative loAbsolute, in comparison to the length of the list?

The Cost of
relative loAbsolute

relativeToAbsolute(List(2,3,5,2,8)) ~

List(2,3,5,2,8) match {
case Empty => Empty

case X :: Xs => X ::. relativeToAbsolute(map(_ + x)(xs))
} -

2 relative"oAbsoZute(map(_ + 2)(L1st(3,5,2,8)) »*
2 . relativeToAbsolute(5 :: map(_ + Z)(Llst(S 2,8)) ¥
2 :: relativeToAbsolute(5 :: 7 :: map(_ + 2)(List(Z2,8)) »*
2 .. relativeToAbsolute(5 :: 7 :: 4 :: map(_ + 2)(List(8)) »*
2 :: relativeToAbsolute(5 :: 7 :: 4 :: 10 :: map(_ + 2)(List())~*
2 :: relativeToAbsolute(5 :: 7 :: 4 :: 10 :: Nil) » *

The cost of
relative [oAbsolute

 Each recursive call requires a map over the

argument list, which takes n steps for a list of
length n

S

= = O(n*)

1—=1

Big O Notation

 We say:

fx) =0(g(z)) as z — <

e o mean that there Is a constant kK and some value Xo

such that

f(x)| < k|lg(x)| for all = > xg

Big O Notation

e [ypically the part:
as T — OO

e IS Implicit

o Effectively, we are defining equivalence classes of
functions

Accumulating Distance to
the Origin

 We could reduce the time taken by instead
accumulating the distance to the origin in a
parameter

Accumulating Distance to
the Origin

def relativeToAbsolute(xs: List[Double]) = {
def inner(xs: List[Double], distanceToOrigin: Double):
List[Double] = {
xs match {
case N1l => Nil

case X :: Xs => {
val xToOrigin = x + distanceToOrigin
xToOrigin :: inner(xs, xToOrigin)

¥

¥
¥

inner(xs, 0)

h

Guidelines for Using
Accumulators In Functions

e Start with the standard design recipes!

 Add an accumulator only after the initial design
attempt

Guidelines for Using
Accumulators In Functions

* Recognize the benefit to the function of having an
accumulator

e Understand what the accumulator denotes

Recognizing the Benetit of
an Accumulator

* |f the function is structurally recursive and uses an
auxiliary function, consider an accumulator

e Study hand evaluations to see if an accumulator
helps in reducing time or space costs

Recognizing the Benetit of
an Accumulator

def invert[T](xs: List[T]): List[T] = {
xs match {
case N1l => N1l
case x :: xs => makeLastItem(x, invert(xs))

¥
¥

def makeLastItem[T](x: T, xs: List[T]): List[T] = {
xs match {
case N1l => List(x)
case y :: ys => Yy :: makeLastItem(x, ys)
¥
¥

Recognizing the Benetit of
an Accumulator

* There is nothing for invert to forget

* However, we might consider accumulating the
items walked over

Recognizing the Benetit of
an Accumulator

def invert[T](xs: List[T]): List[T] = {
def inner(xs: List[T], accumulator: List[T]): List[T] = {
xs match {
case Nil => ..
case y :: ys => .. 1nner(.. ys .. y .. accumulator ..)

¥
¥

ihner(xs, Nil)

¥

Recognizing the Benetit of
an Accumulator

e The accumulator must stand for a list

 Maybe it could stand for all elements that precede
XS

Recognizing the Benetit of
an Accumulator

def invert[T](xs: List[T]): List[T] = {
def inner(xs: List[T], accumulator: List[T]): List[T] = {
xs match {
case N1l => ..
case y :: ys => .. 1nner(.. ys .. y :: accumulator)

¥
¥

ihner(xs, Nil)

¥

Recognizing the Benetit of
an Accumulator

e Now It Is clear that the accumulator contains all the

elements that precede xs in reverse order

Recognizing the Benetit of
an Accumulator

def invert[T](xs: List[T]): List[T] = {
def inner(xs: List[T], accumulator: List[T]): List[T] = {
xs match {
case N1l => accumulator
case y :: ys => 1nner(ys, y :: accumulator)
}
3
ihner(xs, Nil)

¥

Recognizing the Benetit of
an Accumulator

* The key step In the design process is to establish
the invariant that describes the relationship
between the accumulator and the parameters of a
function

e Establish appropriate accumulator invariant is an
art that takes practice

Recognizing the Benetit of
an Accumulator

def suml(xs: List[Int]): Int = {
xs match {
case N1l => 0
case y :: ys =>y + suml(ys)
3
}

An Accumulator for Sum

 We are walking over the elements of a list to return
their sum

* [he most obvious thing to accumulate is the value
of the sum so far

An Accumulator for Sum

def sum2(xs: List[Int]): Int = {
def inner(xs: List[Int], accumulator: Int): Int = {
Xs match {
case N1l => ..
case y :: ys => ..ihner(.ys .. Yy + accumulator)

¥
¥

inner(xs, 0)

¥

An Accumulator for Sum

def sum2(xs: List[Int]): Int = {
def inner(xs: List[Int], accumulator: Int): Int = {
Xs match {
case N1l => accumulator
case y :: ys => 1nner(ys, y + accumulator)

¥
¥

inner(xs, 0)

¥

An Accumulator for Sum

suml(List(5, 3, 7, 9)) ~*
5 + suml(List(3, 7, 9)) ~*
5 + 3 + suml(List(7, 9)) »*
5+ 3 + 7 + suml(L1ist(9)) »*
5+ 3+ 7+ 9 + suml(List()) ~*

An Accumulator for Sum

sum2(List(5, 3, 7, 9)) ~*
inner(List(5, 3, 7, 9), Q) ~*
inner(List(3, 7, 9), 5 + Q) ~*
inner(List(3, 7, 9), 5) ~*
inner(List(7, 9), 5 + 3) »*
inner(List(7, 9), 8) ~*
inner(List(9), 7 + 8) ~*
ithner(L1st(9), 15) »*
inner(List(), 9 + 15) »*
inner(List(), 24) ~*
24

An Accumulator for Sum

* The key advantage of our accumulator version of
sum Is space

 [he advantage is not a matter as to whether the
space Is used on the stack or in the heap as an
argument!

* The abllity to reduce the sum as we recur is the
primary cause of space savings

This Would Not Save Space

def sum3(xs: List[Int]): Int = {
def inner(xs: List[Int], accumulator: () => Int): Int = {
xs match {
case N1l => accumulator()
case y :: ys => inner(ys, (O => (y + accumulator()))

¥
¥

ithner(xs, (O => 0)

¥

