Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC



Thoughts on Accumulators

 Accumulator-based functions are not always faster
 Accumulator-based factorial tends to be slower

 Accumulator-based functions do not always take
less space



Thoughts on Accumulators

 Accumulator-based functions are usually harder to
understand

 Programmers new to functional programming are
seduced by them because sometimes they can be
similar to loops



Thoughts on Accumulators

 Use accumulators judiciously and understand the
benetits you are trying to achieve



Accumulators and Irees

abstract class Tree[+T]
case object Empty extends Tree[Nothing]

case class Branch[+T](data: T, left: Tree[T], right: Tree[T])
extends Tree[T]



Accumulators and Irees

def height[T](tree: Tree[T]): Int = {
tree match {
case Empty => 0
case Branch(d,1l,r) => max(Cheight(l), height(r)) + 1
3
3



Accumulators and Irees

* One natural thing to try is to include an
accumulator of type Int

e This accumulator can maintain the distance we
have descended from the root of the tree



Accumulators and Irees

def height2[T](tree: Tree[T]): Int = {
def inner(tree: Tree[T], accumulator: Int): Int = {
tree match {
case Empty => accumulator
case Branch(d,l,r) => max(inner(l, accumulator + 1),
ithner(r, accumulator + 1))

¥
¥

inner(tree, 0)

¥



Family Irees Revisited

abstract class FamilyTree
case object Empty extends FamilyTree
case class Cons(father: FamilyTree, mother: FamilyTree,

name: String, birthYear: Int, eyes: String)
extends FamilyTree



Family Irees Revisited

* Let's develop a method bluekEyedAncestors that
finds all blue-eyed ancestors in a tree



Family Irees Revisited

def blueEyedAncestors(tree: FamilyTree): List[String] = {
tree match {
case Empty => Nil
case Cons(father,mother,name,_,eyes) => {
val 1nParents = blueEyedAncestors(father) ++
bluekEyedAncestors(mother)

eyes match {
case "blue" => name :: inParents
case _ => 1nParents
ks
ks
ks
ks



Family Irees Revisited

 We have defined a structurally recursive function
that relies on an auxiliary recursive function: ++

e As discussed, functions of this form often benefit
from the use of an accumulator

* We sketch a template tor our accumulator-based
function in the usual way



Family Irees Revisited

def blueEyedAncestors2(tree: FamilyTree): List[String] = {
def inner(tree: FamilyTree, accumulator: ...) = {
tree match {
case Empty => {...}
case Cons(father,mother,name,_,eyes) => {

val inParents = inner(...father...accumulator...) ...

inner(...mother...accumulator...)

eyes match {
case "blue" => name :: inParents
case _ => 1nhParents

ks

ks
ks
ks

inner(tree...)

¥



~ormulating an Accumulator
Invariant

* Our accumulator should remember knowledge about
the family tree lost as we descend the tree

* There are two recursive applications: To the father
tree and the mother tree

e Options:
* Denote all blue-eyed ancestors encountered so far

e Denote all the trees we still need to ook at



Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

def blueEyedAncestorsZ2(tree: FamilyTree): List[String] = {
def inner(tree: FamilyTree, accumulator: List[String]):
List[String] = {
tree match {
case Empty => accumulator
case Cons(father,mother,name,_,eyes) => {
val inParents = inner(father, inner(mother, accumulator))

eyes match {
case "blue" => name :: inParents
case => 1nParents

¥
¥
¥
¥

ihner(tree, Nil)

¥



Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

def blueEyedAncestorsZ2(tree: FamilyTree): List[String] = {
def inner(tree: FamilyTree, accumulator: List[String]):
List[String] = {
tree ma
case Emptyw=> accumulator
case Cons(father,mother,name,_,eyes) => {
val 1inParents™>< inner(father, inner(mother, accumulator))

eyes match {
case "blue" => name 3
case => 1nParents

3
3 Return type is determined by our choice of

3 accumulator invariant

1nParents

¥

inner(tree, Nil)

¥



Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

def blueEyedAncestorsZ2(tree: FamilyTree): List[String] = {
def inner(tree: FamilyTree, accumulator: List[String]):
List[String] = {
tree match {
case Empty => accumulator
case Cons(father,mother,name,_,eyes) => {
val inParents = inner(father, inner(mother, accumulator))

eyes match {
case "blue" => name :: inParents
case => 1nParents

3
3 We must pass in the result of one descent to

¥ the other to maintain the invariant.

¥

inner(tree, Nil)

¥



Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

def blueEyedAncestorsZ2(tree: FamilyTree): List[String] = {
def inner(tree: FamilyTree, accumulator: List[String]):
List[String] = {
tree match {
case Empty => accumulator
case Cons(father,mother,name,_,eyes) => {
val inParents = inner(father, inner(mother, accumulator))

eyes match {
case "blue" => name :: inParents
case => 1nParents

3
3 Thus, our combining operator is function

, ¥ composition.

inner(tree, Nil)

¥



Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

def blueEyedAncestorsZ2(tree: FamilyTree): List[String] = {
def inner(tree: FamilyTree, accumulator: List[String]):
List[String] = {
tree match {
case Empty => accumulator
case Cons(father,moth&r,name,_,eyes) => {
val 1inParents = inner{father, inner(mother, accumulator))

eyes match {
case "blue" => name ::
case => 1nParents

}
} Our choice of invariant determines what

¥ to return in the Empty case.

1xParents

¥

inner(tree, Nil)

¥



Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

def blueEyedAncestorsZ2(tree: FamilyTree): List[String] = {
def inner(tree: FamilyTree, accumulator: List[String]):
List[String] = {
tree match {
case Empty => accumulator
case Cons(father,mother,name,_,eyes) => {
val inParents = inner(father, inner(mother, accumulator))

eyes match {
case "blue" => name :: inParents
case => 1nParents

}
} Our choice also determines the initial

, } value of the accumulator.
1hner(tree, Nitﬁ///////////

¥



Option 2: Denote All Family
Trees Not Yet Processed

def blueEyedAncestors3(tree: FamilyTree): List[String] = {
def inner(tree: FamilyTree, accumulator: List[FamilyTree]):
List[String] = {
tree match {
case Empty => {...}
case Cons(father,mother,name,_,eyes) => {
val inParents = inner(father, mother :: accumulator)

eyes match {
case "blue" => name :: inPdarent
case => 1nParents

¥
1 We must cons the mother tree on our accumulator

} for the recursive call to father, to maintain our

} invariant.
inhner(tree, Nil)

¥



Option 2: Denote All Family
Trees Not Yet Processed

def blueEyedAncestors3(tree: FamilyTree): List[String] = {
def inner(tree: FamilyTree, accumulator: List[FamilyTree]):
List[String] = {
tree match {
case Empty => {...}
case Cons(father,mother,name,_,eyes) => {
val inParents = inner(father, mother :: accumulator)

eyes match {
case "blue" => name :: inParents
case => 1nParents

¥

1 ) Naturally, the only tree to process initially is tree,

1 so our accumulator is Nil.
inner(tree, Nilj”/////////’

¥



Option 2: Denote All Family
Trees Not Yet Processed

def blueEyedAncestors3(tree: FamilyTree): List[String] = {
def inner(tree: FamilyTree, accumulator: List[FamilyTree]):
List[String] = {
tree match {
case Empty => {...}
case Cons(father ,nother,name,_,eyes) => {
val inParents = \tnner(father, mother :: accumulator)

eyes match {
case "blue" => name ::
case => 1nPdrent

¥

) ¥ The Empty case is more difficult for this

1 accumulator invariant.

inParents

inner(tree, Nil)

¥



Option 2: Denote All Family
Trees Not Yet Processed

 When the tree i1s empty, we choose the next
element In our accumulator to recur on



Option 2: Denote All Family
Trees Not Yet Processed

def blueEyedAncestors3(tree: FamilyTree): List[String] = {
def inner(tree: FamilyTree, accumulator: List[FamilyTree]): List[String] = {
tree match {

case Empty => accumulator match {
case N1l => N1l
case tree :: trees => inner(tree, trees)

ks

case Cons(father,mother,name,_,eyes) => {
val inParents = inner(father, mother :: accumulator)

eyes match {
case "blue" => name :: inParents
case _ => 1nParents
ks
ks
ks
ks
inner(tree, Nil)

¥



lall Recursion



lall Recursion

e Some functions defined using accumulators have a
special property:

* [he recursive call occurs as the last step In the
computation



Nats

abstract class Nat {
def 1(): Nat
def *Cm: Nat): Nat
def +(mx Nat): Nat
}

Note that this is a postfix operator.
(This follows from the rules for
method application syntax.)



Nats

case object Zero extends Nat {
def 1() = Next(Zero)
def *(m: Nat) = Zero
def +(m: Nat) = m

l



Nats

case class Next(n: Nat) extends Nat {
def 1() = this * (n!)
def *(m: Nat) =m + (n * m)
def +(m: Nat) = Next(n + m)

}



Nats

Next(Next(Next(Zero)))! -

Next(Next(Next(Zero))) * Next(Next(Zero))! -~

Next(Next(Next(Zero))) * Next(Next(Zero)) * Next(Zero)! ~
Next(Next(Next(Zero))) * Next(Next(Zero)) * Next(Zero) * Zero! -
Next(Next(Next(Zero))) * Next(Next(Zero)) * Next(Zero) * Next(Zero) ~

Next(Next(Next(Next(Next(Next(Zero)))))



lall Recursion

def 1() = this * (n!)



lall Recursion

def 1) = {
def inner(n: Nat, acc: Nat): Nat = {
n match {
case Zero => dcc
case Next(m) => inner(m, n * acc)
$

}
1thner(this, Next(Zero))



Nats

Next(Next(Next(Zero)))! -~

inner(Next(Next(Next(Zero))), Next(Zero)) ~
inner(Next(Next(Zero)), Next(Next(Next(Zero)))) ~
inner(Next(Zero), Next(Next(Next(Next(Next(Next(Zero)))))) =~

inner(Zero, Next(Next(Next(Next(Next(Next(Zero)))))) »
Next(Next(Next(Next(Next(Next(Zero))))))



Translating for Ints

def factorial(n: Int): Int = {
1f (n==0) 1
else n * factorial(n - 1)

¥

def factoriall2(n: Int) = {
def inner(n: Int, acc: Int): Int = {
1f (n == @) acc
else 1nner(n - 1, n * acc)
}
ihner(n, 1)

¥



Pure Recursion with Ints



lall Recursion with Ints

3! »

ihner(3, 1) »
ihner(2, 3) »
inner(l, 6) ~
inner(@, 6) ~
6



