
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Thoughts on Accumulators

• Accumulator-based functions are not always faster

• Accumulator-based factorial tends to be slower

• Accumulator-based functions do not always take
less space

Thoughts on Accumulators

• Accumulator-based functions are usually harder to
understand

• Programmers new to functional programming are
seduced by them because sometimes they can be
similar to loops

Thoughts on Accumulators

• Use accumulators judiciously and understand the
benefits you are trying to achieve

Accumulators and Trees

abstract class Tree[+T]

case object Empty extends Tree[Nothing]

case class Branch[+T](data: T, left: Tree[T], right: Tree[T])
extends Tree[T]

Accumulators and Trees

 def height[T](tree: Tree[T]): Int = {
 tree match {
 case Empty => 0
 case Branch(d,l,r) => max(height(l), height(r)) + 1
 }
 }

Accumulators and Trees

• One natural thing to try is to include an
accumulator of type Int

• This accumulator can maintain the distance we
have descended from the root of the tree

Accumulators and Trees

 def height2[T](tree: Tree[T]): Int = {
 def inner(tree: Tree[T], accumulator: Int): Int = {
 tree match {
 case Empty => accumulator
 case Branch(d,l,r) => max(inner(l, accumulator + 1),
 inner(r, accumulator + 1))
 }
 }
 inner(tree, 0)
 }

Family Trees Revisited

abstract class FamilyTree

case object Empty extends FamilyTree

case class Cons(father: FamilyTree, mother: FamilyTree,
 name: String, birthYear: Int, eyes: String)
extends FamilyTree

Family Trees Revisited

• Let’s develop a method blueEyedAncestors that
finds all blue-eyed ancestors in a tree

Family Trees Revisited
 def blueEyedAncestors(tree: FamilyTree): List[String] = {
 tree match {
 case Empty => Nil
 case Cons(father,mother,name,_,eyes) => {
 val inParents = blueEyedAncestors(father) ++
 blueEyedAncestors(mother)

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }

Family Trees Revisited

• We have defined a structurally recursive function
that relies on an auxiliary recursive function: ++

• As discussed, functions of this form often benefit
from the use of an accumulator

• We sketch a template for our accumulator-based
function in the usual way

Family Trees Revisited
 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: ...) = {
 tree match {
 case Empty => {...}
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(...father...accumulator...) ...
 inner(...mother...accumulator...)
 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree...)
 }

Formulating an Accumulator
Invariant

• Our accumulator should remember knowledge about
the family tree lost as we descend the tree

• There are two recursive applications: To the father
tree and the mother tree

• Options:

• Denote all blue-eyed ancestors encountered so far

• Denote all the trees we still need to look at

Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[String]):
 List[String] = {
 tree match {
 case Empty => accumulator
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, inner(mother, accumulator))

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[String]):
 List[String] = {
 tree match {
 case Empty => accumulator
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, inner(mother, accumulator))

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Return type is determined by our choice of
accumulator invariant

Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[String]):
 List[String] = {
 tree match {
 case Empty => accumulator
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, inner(mother, accumulator))

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

We must pass in the result of one descent to
the other to maintain the invariant.

Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[String]):
 List[String] = {
 tree match {
 case Empty => accumulator
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, inner(mother, accumulator))

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Thus, our combining operator is function
composition.

Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[String]):
 List[String] = {
 tree match {
 case Empty => accumulator
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, inner(mother, accumulator))

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Our choice of invariant determines what
to return in the Empty case.

Option 1: Denote All Blue-Eyed
Ancestors Encountered So Far

 def blueEyedAncestors2(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[String]):
 List[String] = {
 tree match {
 case Empty => accumulator
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, inner(mother, accumulator))

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Our choice also determines the initial
value of the accumulator.

Option 2: Denote All Family
Trees Not Yet Processed

 def blueEyedAncestors3(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[FamilyTree]):
 List[String] = {
 tree match {
 case Empty => {...}
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, mother :: accumulator)

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

We must cons the mother tree on our accumulator
for the recursive call to father, to maintain our

invariant.

Option 2: Denote All Family
Trees Not Yet Processed

 def blueEyedAncestors3(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[FamilyTree]):
 List[String] = {
 tree match {
 case Empty => {...}
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, mother :: accumulator)

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Naturally, the only tree to process initially is tree,
so our accumulator is Nil.

Option 2: Denote All Family
Trees Not Yet Processed

 def blueEyedAncestors3(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[FamilyTree]):
 List[String] = {
 tree match {
 case Empty => {...}
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, mother :: accumulator)

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

The Empty case is more difficult for this
accumulator invariant.

Option 2: Denote All Family
Trees Not Yet Processed

• When the tree is empty, we choose the next
element in our accumulator to recur on

Option 2: Denote All Family
Trees Not Yet Processed

 def blueEyedAncestors3(tree: FamilyTree): List[String] = {
 def inner(tree: FamilyTree, accumulator: List[FamilyTree]): List[String] = {
 tree match {
 case Empty => accumulator match {
 case Nil => Nil
 case tree :: trees => inner(tree, trees)
 }
 case Cons(father,mother,name,_,eyes) => {
 val inParents = inner(father, mother :: accumulator)

 eyes match {
 case "blue" => name :: inParents
 case _ => inParents
 }
 }
 }
 }
 inner(tree, Nil)
 }

Tail Recursion

Tail Recursion

• Some functions defined using accumulators have a
special property:

• The recursive call occurs as the last step in the
computation

Nats

abstract class Nat {
 def !(): Nat
 def *(m: Nat): Nat
 def +(m: Nat): Nat
}

Note that this is a postfix operator.
(This follows from the rules for
method application syntax.)

Nats

case object Zero extends Nat {
 def !() = Next(Zero)
 def *(m: Nat) = Zero
 def +(m: Nat) = m
}

Nats

case class Next(n: Nat) extends Nat {
 def !() = this * (n!)
 def *(m: Nat) = m + (n * m)
 def +(m: Nat) = Next(n + m)
}

Nats

Next(Next(Next(Zero)))! ↦
Next(Next(Next(Zero))) * Next(Next(Zero))! ↦
Next(Next(Next(Zero))) * Next(Next(Zero)) * Next(Zero)! ↦
Next(Next(Next(Zero))) * Next(Next(Zero)) * Next(Zero) * Zero! ↦
Next(Next(Next(Zero))) * Next(Next(Zero)) * Next(Zero) * Next(Zero) ↦
…
Next(Next(Next(Next(Next(Next(Zero)))))

Tail Recursion

 def !() = this * (n!)

Tail Recursion
 def !() = {
 def inner(n: Nat, acc: Nat): Nat = {
 n match {
 case Zero => acc
 case Next(m) => inner(m, n * acc)
 }
 }
 inner(this, Next(Zero))
 }
 }

Nats

Next(Next(Next(Zero)))! ↦
inner(Next(Next(Next(Zero))), Next(Zero)) ↦
inner(Next(Next(Zero)), Next(Next(Next(Zero)))) ↦
inner(Next(Zero), Next(Next(Next(Next(Next(Next(Zero)))))) ↦
inner(Zero, Next(Next(Next(Next(Next(Next(Zero)))))) ↦
Next(Next(Next(Next(Next(Next(Zero))))))

Translating for Ints
 def factorial(n: Int): Int = {
 if (n == 0) 1
 else n * factorial(n - 1)
 }

 def factorial2(n: Int) = {
 def inner(n: Int, acc: Int): Int = {
 if (n == 0) acc
 else inner(n - 1, n * acc)
 }
 inner(n, 1)
 }

Pure Recursion with Ints

3! ↦
3 * 2! ↦
3 * 2 * 1! ↦
3 * 2 * 1 * 0! ↦
3 * 2 * 1 * 1 ↦
…
6

Tail Recursion with Ints

3! ↦
inner(3, 1) ↦
inner(2, 3) ↦
inner(1, 6) ↦
inner(0, 6) ↦
6

