Comp 311
~unctional Programming

Eric Allen, PhD
Vice President, Engineering
Two Sigma Investments, LLC

Equality In Scala

oo (0T Jiva Classes) . .

= =))] - =

« (other Scala classes)..

Equality In Scala

* The method eq on values of type AnyRef checks
that two objects exist In the same place

Equality In Scala

* The method == checks the "natural” equality relation on
a type

« For AnyRefs:

final def ==Cthat: Any): Boolean =
1f (null eqg this) null eq that
else this equals that

Equality In Scala

* The inherited equals method is the same as eg
on values of type AnyRef

e \We can override the inherited definition

* Case classes override automatically

Pitfalls in Overriding Equals

Wrong signature
Not defining an equivalence relation
Defining structural equality on mutable datatypes

Not overriding hashCode

The Signature for Equals

def equals(that: Any): Boolean

Using another signature will result in static overloading.

Not Defining an Equivalence
Relation

* Equivalence relations are:
e Retlexive
* Symmetric
* [ransitive

* Jo respect symmetry, we are forced to check that
the dynamic types of two objects are identical

Ensuring Symmetry

class Point(val x: Int, val y: Int) {
override def equals(that: Any): Boolean = ..

¥

class ColoredPoint(red: Int, blue: Int, green: Int, x: Int, y: Int)
extends Point(x,y)

Ensuring Symmetry

class Point(val x: Int, val y: Int) {
override def equals(that: Any): Boolean = {
1f (this.getClass != that.get(Class) false
else {
val _point = that.asInstanceOf[Point]
(_point.x == x) && (_point.y == y)
¥
¥
¥

class ColoredPoint(red: Int, blue: Int, green: Int, x: Int, y: Int)
extends Point(x,y)

Defining Structural Equality
on Mutable Datatypes

Just say no.

Scala
Collections Classes

Collections in Scala

Traversable

Iterable

IndexedSeq LinearSeq SortedSet BitSet SortedMap

scala.collection.immutable [b

lterable

SortedSet BitSet

Sorted Sets

* Sorted sets are non-repeating ordered collections
of elements

* Canonical implementation is the TreeSet
implementation (which uses red-black trees)

scala.collection.immutable

Traversable

lterable

HashMap SortedMap ListMap

TreeMap

Indexed vs Linear
Sequences

* Linear sequences are intended for recursive
descent via head and tail (as with Lists)

* |ndexed sequences are intended for random
access to positions (as with Arrays)

scala.collection.immutable

IndexedSeq

scala.collection.immutable

Indexed Seq

Vector NumericRange

scala.collection.immutable

scala.collection.mutable

Traversable

pleMap

SynchronzedMap

ObsarvableSel SynchronzedSet ‘

scala.collection.mutable

Travarsabk

llarable

HashMap ListMap MultiMap

WeakHashMap OpenHashMap ObsarvablaMap

scala.collection.mutable

Travarsable

llarable

LinkadHashSel

ke
MultMa P

aMapAdaptor ObsarvableSel

scala.collection.mutable

IndexadSeq

ArrayBufler ArrayStack Prorit

ObsearvableBuffer SynchronizedBuffer SynchronizedStack

| IstBuffers

* |nthe mutable package

 Constant time prepend and append operations
* Append with +=
* Prepend with +=:

e Obtain a list by invoking tolL1st

ArrayBuffers

* Like an array, but with prepend and append

* Prepending and appending on constant time on
average but occasionally require linear time

scala.collection.mutable

LinearSeq

ArrayStack ProrityQueue MutableList DoubleLinkedList

SynchronizedStack SynchronizedProrityQueue

sSynchronizedQueaue

Tralt Traversable

def foreach[U](f: Elem => U)

Sets and Maps

Mutable and immutable versions of these
collections are available

By detault, you get the immutable versions

Add and subtract elements using += and -=

Add and subtract whole collections using ++= and

Using Both Mutable and
Immutable Datatypes at Once

import scala.collection.mutable

Then mutable variants of a collection type such can be
referred to with short qualified names such as:

mutable.Set

Viemoization

Fibonaccl Numbers

def fib(n: Int): Int = {
require (n >= 0)
1f (n == 0) 0
else 1f (n==1) 1
else fib(nh - 1) + fib(n - 2)
} ensuring (_ >= 0)

Fibonaccl Numbers

val memoFib: Int => Int =

memoize {
(n: Int) = {
require (n >= 0)
1f (n ==0) 0

else 1f (n == 1) 1
else memoFib(n - 1) + memoFib(n - 2)
} ensuring (_ >= 0)

¥

Viemoize

def memoize(f: Int => Int) = {
val table = mutable.Map[Int,Int]()
(n: Int) =
table.getOrElse(n, {
val result = f(n)
table += (n -> result)
result

¥)

Impact of Effects on
the Design Recipe

Impact of Effects on the
Design Recipe

e Now that functions have effects:

e The documentation should discuss the
observable effects

 Examples should include observable effects

e [Jests should check that effects occur as
expected

Testing Effects

A common approach to testing in the context of
effects is mocking:

* The external objects and APIs our tested code
Interfaces with are implemented as mock objects

that behave just well enough to enable the test

* Typically, mock objects should perform
contained and reversible actions!

Purely Functional
State

Rolling a Die

e Suppose we want to implement a function that
simulates the rolling of a six-sided die

* The result of calling the function should be a
random number from 110 ©

Rolling a Die

def rollDie: Int = {
val rng = new scala.util.Random
rng.nextInt(o)
The call to nextint will return a value from O to 5,
not 1 to 6..

Stateful Programs and
Debugging

 Because of the state encapsulated in our random
number generator:

* Repeatability of testing is hard
* Bugs are difficult to reduce

 We would like to use effects when necessary
without losing the benefits of reterential
fransparency

