
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Equality in Scala

Equality in Scala

• The method eq on values of type AnyRef checks
that two objects exist in the same place

Equality in Scala
• The method == checks the “natural” equality relation on

a type

• For AnyRefs:

final def ==(that: Any): Boolean =
 if (null eq this) null eq that
 else this equals that

Equality in Scala

• The inherited equals method is the same as eq
on values of type AnyRef

• We can override the inherited definition

• Case classes override automatically

Pitfalls in Overriding Equals

• Wrong signature

• Not defining an equivalence relation

• Defining structural equality on mutable datatypes

• Not overriding hashCode

The Signature for Equals

def equals(that: Any): Boolean

Using another signature will result in static overloading.

Not Defining an Equivalence
Relation

• Equivalence relations are:

• Reflexive

• Symmetric

• Transitive

• To respect symmetry, we are forced to check that
the dynamic types of two objects are identical

Ensuring Symmetry

class Point(val x: Int, val y: Int) {
 override def equals(that: Any): Boolean = …
}

class ColoredPoint(red: Int, blue: Int, green: Int, x: Int, y: Int)
extends Point(x,y)

Ensuring Symmetry

class Point(val x: Int, val y: Int) {
 override def equals(that: Any): Boolean = {
 if (this.getClass != that.getClass) false
 else {
 val _point = that.asInstanceOf[Point]
 (_point.x == x) && (_point.y == y)
 }
 }
}

class ColoredPoint(red: Int, blue: Int, green: Int, x: Int, y: Int)
extends Point(x,y)

Defining Structural Equality
on Mutable Datatypes

Just say no.

Scala
 Collections Classes

Collections in Scala

scala.collection.immutable

Sorted Sets

• Sorted sets are non-repeating ordered collections
of elements

• Canonical implementation is the TreeSet
implementation (which uses red-black trees)

scala.collection.immutable

Indexed vs Linear
Sequences

• Linear sequences are intended for recursive
descent via head and tail (as with Lists)

• Indexed sequences are intended for random
access to positions (as with Arrays)

scala.collection.immutable

scala.collection.immutable

scala.collection.immutable

scala.collection.mutable

scala.collection.mutable

scala.collection.mutable

scala.collection.mutable

ListBuffers
• In the mutable package

• Constant time prepend and append operations

• Append with +=

• Prepend with +=:

• Obtain a list by invoking toList

ArrayBuffers

• Like an array, but with prepend and append

• Prepending and appending on constant time on
average but occasionally require linear time

scala.collection.mutable

Trait Traversable

def foreach[U](f: Elem => U)

Sets and Maps
• Mutable and immutable versions of these

collections are available

• By default, you get the immutable versions

• Add and subtract elements using += and -=

• Add and subtract whole collections using ++= and
—=

Using Both Mutable and
Immutable Datatypes at Once

import scala.collection.mutable

Then mutable variants of a collection type such can be
referred to with short qualified names such as:

mutable.Set

Memoization

Fibonacci Numbers

 def fib(n: Int): Int = {
 require (n >= 0)
 if (n == 0) 0
 else if (n == 1) 1
 else fib(n - 1) + fib(n - 2)
 } ensuring (_ >= 0)

Fibonacci Numbers
 val memoFib: Int => Int =
 memoize {
 (n: Int) => {
 require (n >= 0)
 if (n == 0) 0
 else if (n == 1) 1
 else memoFib(n - 1) + memoFib(n - 2)
 } ensuring (_ >= 0)
 }

Memoize
 def memoize(f: Int => Int) = {
 val table = mutable.Map[Int,Int]()
 (n: Int) =>
 table.getOrElse(n, {
 val result = f(n)
 table += (n -> result)
 result
 })
 }

Impact of Effects on
the Design Recipe

Impact of Effects on the
Design Recipe

• Now that functions have effects:

• The documentation should discuss the
observable effects

• Examples should include observable effects

• Tests should check that effects occur as
expected

Testing Effects
• A common approach to testing in the context of

effects is mocking:

• The external objects and APIs our tested code
interfaces with are implemented as mock objects
that behave just well enough to enable the test

• Typically, mock objects should perform
contained and reversible actions!

Purely Functional
State

Rolling a Die

• Suppose we want to implement a function that
simulates the rolling of a six-sided die

• The result of calling the function should be a
random number from 1 to 6

Rolling a Die

 def rollDie: Int = {
 val rng = new scala.util.Random
 rng.nextInt(6)
 }

The call to nextInt will return a value from 0 to 5,
not 1 to 6..

Stateful Programs and
Debugging

• Because of the state encapsulated in our random
number generator:

• Repeatability of testing is hard

• Bugs are difficult to reduce

• We would like to use effects when necessary
without losing the benefits of referential
transparency

