
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Some Additional Scala
Features

Scripting in Scala

• Scala is designed for building large-scale systems

• It also scales down to small scripts:

• In a single file, we can place class definitions,
function definitions, and even top-level
expressions

Scripting in Scala

• In a single file hello.scala, write:

• From the command-line (in an environment where
scala has been installed):

println(“Hello, scripting world!”)

scala hello.scala

Scripting in Scala

• Command-line arguments are available via a global
array named args:

println(“Hello, ” + args(0) + “!”)

Scripting in Scala

• At the shell:

• And the result is:

scala hello.scala Owls

Hello, Owls!

Scripting in Scala
• On Unix, you can run a Scala script directly from the shell

by putting the following at the top of your script (let’s name
the file hello):

• Then make the file executable:

#!/bin/sh
exec scala “$0” “$@”

chmod u+x hello

Scala Applications

• To compile a stand-alone Scala application, you
can put the driver into a singleton object with a
main method

Scala Applications
• Any singleton object might contain a main method

that takes an argument of type Array[String]:

package edu.rice.cs.comp311.lectures.lecture22

object ArgLengths {
 def main(args: Array[String]) = {
 for (arg <- args)
 println(arg + ": " + arg.length)
 }
}

Scala Applications
• Compile using scalac or fsc

• scalac will recompile all referenced jars, files,
etc.

• Therefore, it can be slow

• fsc starts a process the first time it is run that
memoizes compilation of referenced files

Scala Applications
• Execute a compiled classfile using the scala

command

• Include the full path name

scala edu.rice.cs.comp311.lectures.lecture22.ArgLengths

Fields in Non-Case Classes

• When the constructor of a class is a function:

• When it is called, the enclosing environment is
extended and an object is returned, as defined
by the body of the class

Fields in Non-Case Classes
• A natural consequence:

• The arguments to a constructor call are not
directly accessible outside the object that is
returned from the call

• To make a parameter accessible, define a field

• Case classes automatically define a field for every
constructor parameter

The Follow Code Will Not
Pass Type Checking

class Rational(numerator: Int, denominator: Int) {
 def +(that: Rational) =
 new Rational(numerator * that.denominator +
 that.numerator * denominator,
 denominator * that.denominator)
}

Declaring the Fields
Explicitly Fixes The Problem

class Rational(n: Int, d: Int) {
 val numerator = n
 val denominator = d

 def +(that: Rational) =
 new Rational(numerator * that.denominator +
 that.numerator * denominator,
 denominator * that.denominator)
}

Auxiliary Constructors
• Scala allows for multiple constructor declarations

• Additional constructors are defined as methods
with name this

• The first action of an auxiliary constructor must be
to invoke another constructor

• Only constructors defined earlier in the class
definition are in scope

Auxiliary Constructors
class Rational(n: Int, d: Int) {
 val numerator = n
 val denominator = d

 def this(n: Int) = this(n, 1)

 def +(that: Rational) =
 new Rational(numerator * that.denominator +
 that.numerator * denominator,
 denominator * that.denominator)
}

Companion Objects

• A class and can be given a companion object:

• A singleton object definition with the same name
as the class

• Must be defined in the same file as the class

• The object and class share private members

Companion Objects and
Factory Methods

• Companion objects are well-suited for defining
factory methods:

object Rational {
 def apply(n: Int, d: Int) =
 if (d != 0) new Rational(n, d)
 else throw new Error("Given a zero denominator")
}

Private Primary Constructors
• Primary constructors can be hidden by prefixing

them with the keyword private:

class Rational private(n: Int, d: Int) {
 val numerator = n
 val denominator = d

 def this(n: Int) = this(n, 1)

 def +(that: Rational) =
 new Rational(numerator * that.denominator +
 that.numerator * denominator,
 denominator * that.denominator)
}

Private Constructors and
Companion Objects

> Rational(1,1) // ok
> Rational(1,0) // error
> new Rational(1,2) // error
> new Rational(2) // ok

Extractors

Extractors

• It is possible to control how an object will interact
with pattern matching through the use of extractors

• Extractors are objects that define an unapply
method, which takes an object and returns an
option of one or more elements

Extractors
object Rational {
 def apply(n: Int, d: Int) = {
 if (d != 0) new Rational(n, d)
 else throw new Error("Given a zero denominator")
 }

 def unapply(q: Rational): Option[(Int, Int)] = {
 Some((q.numerator, q.denominator))
 }
}

Extractors

• An unapply method is called in a pattern by
prefixing the name of the extractor object followed
by a tuple of expected elements

• If the unapply method returns Some((x1,…xN)) and
the arity of the tuple (x1,…xN) matches the number
of bound variables in the pattern, we have a match

Extractors
class Rational private(n: Int, d: Int) {
 val numerator = n
 val denominator = d

 def +(that: Rational) = {
 that match {
 case Rational(n2,d2) =>
 Rational(n * d2 + n2 * d,
 d * d2)
 }
 }
}

Case Classes Revisited
• We are now in a position to better explain what a case class definition

is given implicitly:

• A private primary constructor

• Immutable fields for every parameter

• Structural equals and hashCode methods

• A structural toString method

• A companion object with apply and unapply methods

• A copy method with parameters for each constructor parameter,
defaulted to the field values of the receiver

Extractors vs Case Classes
• Explicit extractors are far more verbose than using case

classes

• However, they have advantages of their own:

• They separate implementation from pattern matching

• The can be used to deconstruct objects outside of their
class definitions

• They can perform more sophisticated deconstruction

• For example, regular expression matching on strings

Extractors vs Case Classes

• Case classes also have many advantages:

• Conciseness

• Performance: The Scala compiler optimizes
patterns with case classes aggressively

Combinator Parsing

Combinator Parsing

• Sometimes there are situations in which we need to
process expressions in a small ad-hoc language

• Configuration files for your program

• An input language to your program such as
search queries

Combinator Parsing
• Options:

• Roll your parser

• Requires significant expertise and time

• Use a parser generator (ANTLR)

• Many advantages but also requires learning
and wiring up a new tool into your program

Combinator Parsing

• Another option:

• Define an internal domain-specific language

• Consists of a library of parser combinators:

• Scala functions and operators that serve as the
building blocks for parsers

Combinator Parsing

• Each combinator corresponds to one production of
a context-free grammar

Arithmetic Expressions

 expr ::= term {“+” term | “-” term}.
 term ::= factor {“*” factor | “/” factor}.
factor ::= floatingPointNumber | “(” expr “)”.

Arithmetic Expressions

 expr ::= term {“+” term | “-” term}.
 term ::= factor {“*” factor | “/” factor}.
factor ::= floatingPointNumber | “(” expr “)”.

Denotes definition of a production

Arithmetic Expressions

 expr ::= term {“+” term | “-” term}.
 term ::= factor {“*” factor | “/” factor}.
factor ::= floatingPointNumber | “(” expr “)”.

Denotes alternatives

Arithmetic Expressions

 expr ::= term {“+” term | “-” term}.
 term ::= factor {“*” factor | “/” factor}.
factor ::= floatingPointNumber | “(” expr “)”.

Denotes zero or more repetitions

Arithmetic Expressions

 expr ::= term {“+” term | “-” term}.
 term ::= factor {“*” factor | “/” factor}.
factor ::= floatingPointNumber | “(” expr “)”.

Square brackets [] denote optional occurrences (not used here).

Example Arithmetic
Expression

2 * 3 + 4 * 5 - 6

A Formal Grammar for
Arithmetic Expressions in BNF

 expr ::= term {“+” term | “-” term}.
 term ::= factor {“*” factor | “/” factor}.
factor ::= floatingPointNumber | “(” expr “)”.

Denotes one or more repetitions

Example Arithmetic
Expression

2 * 3 + 4 * 5 - 6

factors

Arithmetic Expressions

 expr ::= term {“+” term | “-” term}.
 term ::= factor {“*” factor | “/” factor}.
factor ::= floatingPointNumber | “(” expr “)”.

Denotes one or more repetitions

Example Arithmetic
Expression

2 * 3 + 4 * 5 - 6

terms

Arithmetic Expressions

 expr ::= term {“+” term | “-” term}.
 term ::= factor {“*” factor | “/” factor}.
factor ::= floatingPointNumber | “(” expr “)”.

Denotes one or more repetitions

Example Arithmetic
Expression

2 * 3 + 4 * 5 - 6

expressions

This Grammar Encodes
Operator Precedence

• Expressions contain terms

• Terms contain factors

• Factors only contain expressions if they are
enclosed in parentheses

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
 def expr: Parser[Any] = term~rep("+"~term | "-"~term)
 def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
 def factor: Parser[Any] = floatingPointNumber | "("~expr~")"
}

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
 def expr: Parser[Any] = term~rep("+"~term | "-"~term)
 def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
 def factor: Parser[Any] = floatingPointNumber | "("~expr~")"
}

A parser for floating point numbers inherited from
JavaTokenParsers.

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
 def expr: Parser[Any] = term~rep("+"~term | "-"~term)
 def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
 def factor: Parser[Any] = floatingPointNumber | "("~expr~")"
}

A combinator that takes two parsers and returns a new parser
that first applies the left parser to its input,

then its right to whatever remains.

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
 def expr: Parser[Any] = term~rep("+"~term | "-"~term)
 def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
 def factor: Parser[Any] = floatingPointNumber | "("~expr~")"
}

This combinator is overloaded so that string arguments
are converted to simple parsers that match the string.

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
 def expr: Parser[Any] = term~rep("+"~term | "-"~term)
 def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
 def factor: Parser[Any] = floatingPointNumber | "("~expr~")"
}

A combinator that takes two parsers and returns a new parser
that first applies the left parser to its input, and returns the result,

unless the left parser fails (then it applies the right parser).

Encoding a Grammar Using
Scala Parser Combinators

import scala.util.parsing.combinator._

class Arith extends JavaTokenParsers {
 def expr: Parser[Any] = term~rep("+"~term | "-"~term)
 def term: Parser[Any] = factor~rep("*"~factor | "/"~factor)
 def factor: Parser[Any] = floatingPointNumber | "("~expr~")"
}

A combinator that takes a parser and repeatedly applies it to the
input as many times as possible.

To Convert a Grammar to a
Definition with Parser Combinators
• Every production becomes a method

• The result of each method is Parser[Any]

• Insert the explicit operator ~ between two consecutive symbols
of a production

• Represent repetition with calls to the function rep instead of { }

• Represent repetitions with a separator with calls to the function
repsep

• Represent optional occurrences with opt instead of []

Exercising Our Parser

object ParseExpr extends Arith {
 def main(args: Array[String]) = {
 println("input: " + args(0))
 println(parseAll(expr, args(0)))
 }
}

An Example Parse of
Grammatical Input

scala edu.rice.cs.comp311.lectures.lecture22.ParseExpr 2*3+4*5-6
input: 2*3+4*5-6
[1.10] parsed: ((2~List((*~3)))~List((+~(4~List((*~5)))), (-~(6~List()))))

An Example Parse of
Ungrammatical Input

scala edu.rice.cs.comp311.lectures.lecture22.ParseExpr 2*3+4*5-6)
-bash: syntax error near unexpected token `)'

What is Returned from a
Parser

• Parsers built from strings return the string (if it matches)

• The ~ combinator returns both results, as elements of a
case class named ~ (with a toString that places the ~
infix)

• The | combinator returns the result of whichever
succeeds

• The rep operator returns a list of its results

• The opt operator returns an Option of its result

Transforming the Output of a
Parser

• The ^^ combinator transforms the result of a parser:

• Let P be a parser that returns a result of type R

• Let f be a function that takes an argument of type
R

• Returns a parser that applies P, takes the result
and applies f to it

P^^f

Transforming the Output of a
Parser

floatingPointNumber ^^ (_.toDouble)

Transforming the Output of a
Parser

“true” ^^ (x => true)

Parsing JSON
• Many processes need to exchange complex data

with other processes (often over a network)

• We need a portable way to represent the structure
of data so that processes can conveniently send
data amongst themselves

• One of the most popular modern languages for
exchanging data is JSON, the Javascript Object
Notation

Parsing JSON

• A JSON object is a sequence of members
separated by commas and enclosed in braces

• Each member is a string/value pair, separated by a
colon

• A JSON array is a sequence of values separated
by commas and enclosed in square brackets

JSON Example
{
 “address book” : {
 “name” : “Eva Luate”,
 “address” : {
 “street” : “6100 Main St”
 “city” : “Houston TX”,
 “zip” : 77005
 },
 “phone numbers”: [
 “555 555-5555”,
 “555 555-6666”
]
 }
}

