
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Functional Programming
and Large Scale Data

Analytics

Large Scale Data Analytics
• Many trends have resulted in a dramatic rise in the

amount of data available for computation:

• e-commerce

• social networking

• mobile phones

• etc.

Large Scale Data Analytics
• Significant value can be gleaned from quick

processing of large datasets

• Real-time navigation adjustments

• Targeted online advertising

• Customized medical diagnosis

• Retail recommendations

• More relevant news and social feeds

Large Scala Data Analytics
• AT&T processes roughly 30 petabytes per day through its

telecommunications network

• Google processed roughly 24 petabytes per day in 2009

• Facebook, Amazon, Twitter, etc, have comparable throughputs

• Two Sigma maintains over 100 teraflops of private computing
power continuously computing over 11 petabytes of
quantitative data

• By comparison, the IBM Watson knowledge base stored
roughly 4 terabytes of data when winning at Jeopardy

Challenges in Computing
Large-Scale Streaming Data

• Continuously streaming data needs to be processed at least as
fast as it is accumulated, or we will never catch up

• The bottleneck in processing very large data sets has been
dominated for many years by the speed of disk access

• More processors accessing more disks enables faster
processing

Data

Cloud Computing
• Computing, storage, and communication at pennies per

hour

• No premium to scale:

• 1000 computers @ 1 hour = 1 computer @ 1000 hours

• Provides the illusion of infinite scalability to cloud user

• Use as many computers as you can afford

• Leading examples: Amazon Web Services (AWS), Google
App Engine, Microsoft Azure

Cloud Computing
• Economies of scale have pushed down datacenter costs

by factors of 3-8

• Traditional datacenters utilized 10% - 20% of their
machines

• Cloud computing services are far more economical

• But how do we extract portable and scalable parallelism
from our programs?

• One solution: Take advantage of functional
programming to express simple parallelism easily

Cluster Computing
Frameworks

• Enabled writing of parallel computations using
functional operators, without worrying about
distribution and fault tolerance

 Driver

 JVM 5 JVM 4 JVM 3 JVM 2 JVM 1

MapReduce
• Load a large data set from disk on to multiple

machines

• Map a function over that data to return key value pairs

• Shuffle results so that pairs with the same keys are
brought together

• Reduce to one value for each key

• Write result to disk

MapReduce

• Computations that involve a sequence of iterations
of map/reduce operations pay a heavy price:

• Each iteration must read from and write to disk

Iterative Map/Reduce
Schedulers

• Users started to realize that a much larger class of
algorithms could be expressed as an iteration of
MapReduce operations

• Many machine learning algorithms fall into this
category

• Tools started to emerge to enable easy expression
of map/reduce operations along with smart
scheduling

Apache Spark

• Cache results of map/reduce operations so they
can be used on subsequent iterations

• 10-100 times faster than MapReduce for many
applications

Resilient
Distributed Datasets

• Fault-Tolerant parallel data structures

• Enable users to:

• Persist intermediate results in memory

• Control partitioning to optimize data placement

• Manipulate data with many available operators

Resilient Distributed
Datasets

• Immutable

• Operators are coarse-grained: map, filter, join,
etc.

• Allows for efficient fault tolerance by logging
the operations applied to build a dataset rather
than the actual dataset

Spark and Resilient
Distributed Datasets

• Partitioned across the many machines of a
cluster

• Created by:

• Reading data from storage

• Performing transformations on other RDDs

Resilient
Distributed Datasets

• Stores information as to how it was derived from
other datasets

• Able to compute its partitions from data on disk

• Impossible to reference an RDD that cannot be
reconstructed after a failure

Resilient
Distributed Datasets

• Persistence

• A program:

• Indicates which RDDs will be reused

• Chooses a storage strategy for each RDD

Resilient
Distributed Datasets

• Partitioning

• A program:

• Asks that RDDs are partitioned across
machines based on a key in each record

• Useful for ensuring that two datasets can be
joined efficiently

The RDD API
• RDDs defined through transformations on data on disk

• map, filter, etc.

• RDDs are used in actions:

• Operations that return a value or export data to disk

• count, collect, save

• No work is done on the cluster until an action
forces it

The RDD API
• RDDs have a persist method

• Indicates that an RDD will be used in subsequent
operations

• Implementation attempts to keep persisted RDDs
in memory of the machines in a cluster

• Spills to disk gracefully

Creating an RDD

val lines = spark.textFile(“hdfs://…”)
val errors = lines.filter(_.startsWith(“ERROR”))
errors.persist()

No work has been done yet on the cluster.

Creating an RDD

val lines = spark.textFile(“hdfs://…”)
val errors = lines.filter(_.startsWith(“ERROR”))
errors.persist()

The RDD records the transformations performed to compute
it from disk, enabling recomputation after a failure.

Performing an Action on an
RDD

errors.count()

An action will force computation of the RDD.

Performing an Action on an
RDD

errors.count()

Because errors is now stored in memory,
subsequent computations involving errors

will be much faster.

Performing an Action on an
RDD

errors.count()

Note that the lines RDD is never stored in memory.
(Why is this behavior desirable?)

Performing an Action on an
RDD

errors.filter(_.contains(“MySQL”))

New RDDs can be computed via
transformations on existing RDDs.

Performing an Action on an
RDD

errors.filter(_.contains(“MySQL”)).count()

Again, computation is not performed
until an action forces it.

Performing an Action on an
RDD

errors.filter(_.contains(“HDFS”))
 .map(_.split(‘\t’)(3))
 .collect()

Splits a line into an array of elements,
according to occurrences of the tab character.

Performing an Action on an
RDD

errors.filter(_.contains(“HDFS”))
 .map(_.split(‘\t’)(3))
 .collect()

Accesses the fourth element of each array.
(In this case, let’s say that the fourth element of

the log lines stores time.)

Performing an Action on an
RDD

val times =
 for (x <- errors if x contains “HDFS”)
 yield x.split(‘\t’)(3)

times.collect()

Alternative syntax using for- expressions.

Lineage Graph For
times RDD

lines

errors

HDFS errors

times

filter(_.startsWith(“ERROR”)

filter(_.contains(“HDFS”))

map(_.split(‘/t’)(3))

Lineage Graph For
times RDD

lines

errors

HDFS errors

times

filter(_.startsWith(“ERROR”)

filter(_.contains(“HDFS”))

map(_.split(‘/t’)(3))

The Spark scheduler will
pipeline these

transformations.

Lineage Graph For
times RDD

lines

errors

HDFS errors

times

filter(_.startsWith(“ERROR”)

filter(_.contains(“HDFS”))

map(_.split(‘/t’)(3))

Tasks for transformations
are sent to each node.

Lineage Graph For
times RDD

lines

errors

HDFS errors

times

filter(_.startsWith(“ERROR”)

filter(_.contains(“HDFS”))

map(_.split(‘/t’)(3))

If a partition of errors
is lost, Spark rebuilds
it by recomputing from

the corresponding
partition of lines.

Transformations
Available on RDDs

• map(f: T => U): RDD[T] => RDD[U]

• filter(f: T => Boolean): RDD[T] => RDD[T]

• flatMap(f: T => Sequence[U]): RDD[T] => RDD[U]

• sample(fraction: Float): RDD[T] => RDD[T]

• union(RDD[T], RDD[T]): RDD[T]

Transformations Available
On RDDs of Key/Value Pairs

groupByKey(): RDD[(K,V)] => RDD[(K,Sequence[V])]

reduceByKey(f: (V,V) => V): RDD[(K,V)] => RDD[(K,V)]

join(): (RDD[(K,V)], RDD[(K,W)]) => RDD[K,(V,W)]

Transformations Available
On RDDs of Key/Value Pairs

cogroup():

 (RDD[(K,V)],RDD[(K,W)]) =>

 RDD[K (Sequence[V],Sequence[W])]

crossProduct():

 (RDD[T],RDD[U]) => RDD[(T,U)]

Transformations Available
On RDDs of Key/Value Pairs

mapValues(f: V => W): RDD[(K,V)] => RDD[(K,W)]

Preserves partitioning.

Transformations Available
On RDDs of Key/Value Pairs

partitionBy(p: Partitioner[K]): RDD[(K,V)] => RDD[(K,V)]

Actions Available on RDDs

count(): RDD[T] => Long
collect(): RDD[T] => Sequence[T]
reduce(f: (T,T) => T): RDD[T] => T

lookup(k: K): RDD[(K,V)] => Sequence[V]
save(path: String): ()

WordCount in Spark

val file = spark.textFile(“hdfs://...")

val counts = file.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey((x,y) => x + y)

counts.saveAsTextFile("hdfs://...")

WordCount in Spark

val file = spark.textFile(“hdfs://...")

val words = for (line <- file,
 word <- line.split(" “))
 yield (word, 1)

val counts = words.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

(“this”, “is”, “a”, “line”, “this”, “is”,
 “another”, “line”, “this”, “is”, “yet”,
 “another”, “line”)
.map(word => (word, 1))

((“this”,1), (“is”,1), (“a”,1), (“line”,1),
 (“this”,1), (“is”,1), (“another”,1),
 (“line”,1), (“this”,1), (“is”,1),
 (“yet”,1),(“another”,1), (“line”,1))

x.reduceByKey(f) = x.groupByKey()
 .map(xs => xs.reduce(f))

((“this”,1), (“is”,1), (“a”,1), (“line”,1),
 (“this”,1), (“is”,1), (“another”,1),
 (“line”,1), (“this”,1), (“is”,1),
 (“yet”,1),(“another”,1), (“line”,1))
.groupByKey().map(xs => xs.reduce(_ + _))

((“this”, (1,1,1),
 (“is”, (1,1,1),
 (“a”, (1)),
 (“line”, (1,1,1)),
 (“another”, (1,1)),
 (“yet”, (1))).map(xs => xs.reduce(_ + _))

((“this”, (1,1,1)).reduce(_ + _),
 (“is”, (1,1,1)).reduce(_ + _),
 (“a”, (1)).reduce(_ + _),
 (“line”, (1,1,1)).reduce(_ + _),
 (“another”, (1,1)).reduce(_ + _),
 (“yet”, (1)).reduce(_ + _))

((“this”, 3), (“is”, 3), (“a”, 1),
 (“line”, 3), (“another”, 2), (“yet”, 1))

Machine Learning
With Spark

• Given a collection of examples with various
attributes and a label, we wish to predict the labels
for new examples:

<170 cm, 72 kg, 52, 120, 80>: YES

<150 cm, 60 kg, 34 years, 130, 70> : NO

…

<height, weight, age, systolic bp, diastolic bp>: medicine?

Machine Learning
With Spark

• We can view the examples as vectors in a high-dimensional vector
space

• The problem of labeling yes/no can be solved by finding the best
hyperplane that divides the given examples according to their labels

• This new hyperplane can be used to predict labels for new examples

Machine Learning
With Spark

• We can view the examples as vectors in a high-dimensional vector
space

• The problem of labeling yes/no can be solved by finding the best
hyperplane that divides the given examples according to their labels

• This new hyperplane can be used to predict labels for new examples

Logistic Regression
With Spark

val points = spark.textFile(…).map(parsePoint).cache()

var w = Vector.random(D) // current separating plane

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(p =>
 (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)

 w -= gradient
}

println("Final separating plane: " + w)

