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Large Scale Data Analytics
• Many trends have resulted in a dramatic rise in the 

amount of data available for computation: 

• e-commerce 

• social networking 

• mobile phones 

• etc.



Large Scale Data Analytics
• Significant value can be gleaned from quick 

processing of large datasets 

• Real-time navigation adjustments 

• Targeted online advertising 

• Customized medical diagnosis 

• Retail recommendations 

• More relevant news and social feeds



Large Scala Data Analytics
• AT&T processes roughly 30 petabytes per day through its 

telecommunications network  

• Google processed roughly 24 petabytes per day in 2009 

• Facebook, Amazon, Twitter, etc, have comparable throughputs 

• Two Sigma maintains over 100 teraflops of private computing 
power continuously computing over 11 petabytes of 
quantitative data 

• By comparison, the IBM Watson knowledge base stored 
roughly 4 terabytes of data when winning at Jeopardy



Challenges in Computing 
Large-Scale Streaming Data

• Continuously streaming data needs to be processed at least as 
fast as it is accumulated, or we will never catch up 

• The bottleneck in processing very large data sets has been 
dominated for many years by the speed of disk access 

• More processors accessing more disks enables faster 
processing 

Data



Cloud Computing
• Computing, storage, and communication at pennies per 

hour  

• No premium to scale: 

• 1000 computers @ 1 hour = 1 computer @ 1000 hours 

• Provides the illusion of infinite scalability to cloud user 

• Use as many computers as you can afford 

• Leading examples: Amazon Web Services (AWS), Google 
App Engine, Microsoft Azure



Cloud Computing
• Economies of scale have pushed down datacenter costs 

by factors of 3-8 

• Traditional datacenters utilized 10% - 20% of their 
machines 

• Cloud computing services are far more economical 

• But how do we extract portable and scalable parallelism 
from our programs? 

• One solution: Take advantage of functional 
programming to express simple parallelism easily



Cluster Computing 
Frameworks

• Enabled writing of parallel computations using 
functional operators, without worrying about 
distribution and fault tolerance 

 Driver 

 JVM 5 JVM 4 JVM 3 JVM 2 JVM 1



MapReduce
• Load a large data set from disk on to multiple 

machines 

• Map a function over that data to return key value pairs 

• Shuffle results so that pairs with the same keys are 
brought together 

• Reduce to one value for each key 

• Write result to disk



MapReduce

• Computations that involve a sequence of iterations 
of map/reduce operations pay a heavy price: 

• Each iteration must read from and write to disk



Iterative Map/Reduce 
Schedulers

• Users started to realize that a much larger class of 
algorithms could be expressed as an iteration of 
MapReduce operations 

• Many machine learning algorithms fall into this 
category 

• Tools started to emerge to enable easy expression 
of map/reduce operations along with smart 
scheduling



Apache Spark

• Cache results of map/reduce operations so they 
can be used on subsequent iterations 

• 10-100 times faster than MapReduce for many 
applications



Resilient  
Distributed Datasets

• Fault-Tolerant parallel data structures 

• Enable users to:  

• Persist intermediate results in memory 

• Control partitioning to optimize data placement 

• Manipulate data with many available operators



Resilient Distributed 
Datasets

• Immutable 

• Operators are coarse-grained: map, filter, join, 
etc. 

• Allows for efficient fault tolerance by logging 
the operations applied to build a dataset rather 
than the actual dataset



Spark and Resilient 
Distributed Datasets

• Partitioned across the many machines of a 
cluster 

• Created by: 

• Reading data from storage 

• Performing transformations on other RDDs



Resilient  
Distributed Datasets

• Stores information as to how it was derived from 
other datasets 

• Able to compute its partitions from data on disk 

• Impossible to reference an RDD that cannot be 
reconstructed after a failure



Resilient  
Distributed Datasets

• Persistence 

• A program: 

• Indicates which RDDs will be reused 

• Chooses a storage strategy for each RDD



Resilient  
Distributed Datasets

• Partitioning 

• A program: 

• Asks that RDDs are partitioned across 
machines based on a key in each record 

• Useful for ensuring that two datasets can be 
joined efficiently



The RDD API
• RDDs defined through transformations on data on disk 

• map, filter, etc. 

• RDDs are used in actions: 

• Operations that return a value or export data to disk 

• count, collect, save 

• No work is done on the cluster until an action 
forces it



The RDD API
• RDDs have a persist method 

• Indicates that an RDD will be used in subsequent 
operations 

• Implementation attempts to keep persisted RDDs 
in memory of the machines in a cluster 

• Spills to disk gracefully



Creating an RDD

val lines = spark.textFile(“hdfs://…”)
val errors = lines.filter(_.startsWith(“ERROR”))
errors.persist()

No work has been done yet on the cluster.



Creating an RDD

val lines = spark.textFile(“hdfs://…”)
val errors = lines.filter(_.startsWith(“ERROR”))
errors.persist()

The RDD records the transformations performed to compute
it from disk, enabling recomputation after a failure.



Performing an Action on an 
RDD

errors.count()

An action will force computation of the RDD. 



Performing an Action on an 
RDD

errors.count()

Because errors is now stored in memory,
subsequent computations involving errors 

will be much faster.



Performing an Action on an 
RDD

errors.count()

Note that the lines RDD is never stored in memory. 
(Why is this behavior desirable?)



Performing an Action on an 
RDD

errors.filter(_.contains(“MySQL”))

New RDDs can be computed via 
transformations on existing RDDs. 



Performing an Action on an 
RDD

errors.filter(_.contains(“MySQL”)).count()

Again, computation is not performed
until an action forces it. 



Performing an Action on an 
RDD

errors.filter(_.contains(“HDFS”))
  .map(_.split(‘\t’)(3))
  .collect()

Splits a line into an array of elements,
according to occurrences of the tab character.



Performing an Action on an 
RDD

errors.filter(_.contains(“HDFS”))
  .map(_.split(‘\t’)(3))
  .collect()

Accesses the fourth element of each array.
(In this case, let’s say that the fourth element of

the log lines stores time.)



Performing an Action on an 
RDD

val times = 
  for (x <- errors if x contains “HDFS”)
  yield x.split(‘\t’)(3)

times.collect()

Alternative syntax using for- expressions.



Lineage Graph For  
times RDD

lines

errors

HDFS errors

times

filter(_.startsWith(“ERROR”)

filter(_.contains(“HDFS”))

map(_.split(‘/t’)(3))



Lineage Graph For  
times RDD

lines

errors

HDFS errors

times

filter(_.startsWith(“ERROR”)

filter(_.contains(“HDFS”))

map(_.split(‘/t’)(3))

The Spark scheduler will  
pipeline these  

transformations.



Lineage Graph For  
times RDD

lines

errors

HDFS errors

times

filter(_.startsWith(“ERROR”)

filter(_.contains(“HDFS”))

map(_.split(‘/t’)(3))

Tasks for transformations 
are sent to each node.



Lineage Graph For  
times RDD

lines

errors

HDFS errors

times

filter(_.startsWith(“ERROR”)

filter(_.contains(“HDFS”))

map(_.split(‘/t’)(3))

If a partition of errors 
is lost, Spark rebuilds 
it by recomputing from 

the corresponding 
partition of lines.



Transformations  
Available on RDDs

• map(f: T => U): RDD[T] => RDD[U]

• filter(f: T => Boolean): RDD[T] => RDD[T]

• flatMap(f: T => Sequence[U]): RDD[T] => RDD[U]

• sample(fraction: Float): RDD[T] => RDD[T]

• union(RDD[T], RDD[T]): RDD[T]



Transformations Available  
On RDDs of Key/Value Pairs

groupByKey(): RDD[(K,V)] => RDD[(K,Sequence[V])]

reduceByKey(f: (V,V) => V): RDD[(K,V)] => RDD[(K,V)]

join(): (RDD[(K,V)], RDD[(K,W)]) => RDD[K,(V,W)]



Transformations Available  
On RDDs of Key/Value Pairs

cogroup(): 

   (RDD[(K,V)],RDD[(K,W)]) => 

      RDD[K (Sequence[V],Sequence[W])]

crossProduct(): 

   (RDD[T],RDD[U]) => RDD[(T,U)]



Transformations Available  
On RDDs of Key/Value Pairs

mapValues(f: V => W): RDD[(K,V)] => RDD[(K,W)]

Preserves partitioning.



Transformations Available  
On RDDs of Key/Value Pairs

partitionBy(p: Partitioner[K]): RDD[(K,V)] => RDD[(K,V)]



Actions Available on RDDs

count(): RDD[T] => Long
collect(): RDD[T] => Sequence[T]
reduce(f: (T,T) => T): RDD[T] => T

lookup(k: K): RDD[(K,V)] => Sequence[V]
save(path: String): ()



WordCount in Spark

val file = spark.textFile(“hdfs://...")

val counts = file.flatMap(line => line.split(" "))
                 .map(word => (word, 1))
                 .reduceByKey((x,y) => x + y)

counts.saveAsTextFile("hdfs://...")



WordCount in Spark

val file = spark.textFile(“hdfs://...")

val words = for (line <- file,
                 word <- line.split(" “))
            yield (word, 1)

val counts = words.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")



(“this”, “is”, “a”, “line”, “this”, “is”,
 “another”, “line”, “this”, “is”, “yet”,
 “another”, “line”)
.map(word => (word, 1))



((“this”,1), (“is”,1), (“a”,1), (“line”,1),   
 (“this”,1), (“is”,1), (“another”,1), 
 (“line”,1), (“this”,1), (“is”,1), 
 (“yet”,1),(“another”,1), (“line”,1))



x.reduceByKey(f) = x.groupByKey()
  .map(xs => xs.reduce(f))



((“this”,1), (“is”,1), (“a”,1), (“line”,1),   
 (“this”,1), (“is”,1), (“another”,1), 
 (“line”,1), (“this”,1), (“is”,1), 
 (“yet”,1),(“another”,1), (“line”,1))
.groupByKey().map(xs => xs.reduce(_ + _))



((“this”, (1,1,1),
 (“is”, (1,1,1),
 (“a”, (1)),
 (“line”, (1,1,1)), 
 (“another”, (1,1)), 
 (“yet”, (1))).map(xs => xs.reduce(_ + _))



((“this”, (1,1,1)).reduce(_ + _),
 (“is”, (1,1,1)).reduce(_ + _),
 (“a”, (1)).reduce(_ + _),
 (“line”, (1,1,1)).reduce(_ + _), 
 (“another”, (1,1)).reduce(_ + _), 
 (“yet”, (1)).reduce(_ + _))



((“this”, 3), (“is”, 3), (“a”, 1), 
 (“line”, 3), (“another”, 2), (“yet”, 1))



Machine Learning  
With Spark

• Given a collection of examples with various 
attributes and a label, we wish to predict the labels 
for new examples: 

<170 cm, 72 kg, 52, 120, 80>: YES

<150 cm, 60 kg, 34 years, 130, 70> : NO

…

<height, weight, age, systolic bp, diastolic bp>: medicine?



Machine Learning  
With Spark

• We can view the examples as vectors in a high-dimensional vector 
space 

• The problem of labeling yes/no can be solved by finding the best 
hyperplane that divides the given examples according to their labels 

• This new hyperplane can be used to predict labels for new examples



Machine Learning  
With Spark

• We can view the examples as vectors in a high-dimensional vector 
space 

• The problem of labeling yes/no can be solved by finding the best 
hyperplane that divides the given examples according to their labels 

• This new hyperplane can be used to predict labels for new examples



Logistic Regression  
With Spark

val points = spark.textFile(…).map(parsePoint).cache()

var w = Vector.random(D) // current separating plane

for (i <- 1 to ITERATIONS) {
  val gradient = points.map(p =>
    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
  ).reduce(_ + _)

  w -= gradient
}

println("Final separating plane: " + w)


