
Comp 311
Functional Programming

Eric Allen, PhD
Vice President, Engineering

Two Sigma Investments, LLC

Machine Learning
With Spark

• Given a collection of examples with various
attributes and a label, we wish to predict the labels
for new examples:

<170 cm, 72 kg, 52, 120, 80>: YES

<150 cm, 60 kg, 34 years, 130, 70> : NO

…

<height, weight, age, systolic bp, diastolic bp>: medicine?

Machine Learning
With Spark

• We can view the examples as vectors in a high-dimensional vector
space

• The problem of labeling yes/no can be solved by finding the best
hyperplane that divides the given examples according to their labels

• This new hyperplane can be used to predict labels for new examples

Machine Learning
With Spark

• We can view the examples as vectors in a high-dimensional vector
space

• The problem of labeling yes/no can be solved by finding the best
hyperplane that divides the given examples according to their labels

• This new hyperplane can be used to predict labels for new examples

Logistic Regression
With Spark

val points = spark.textFile(…).map(parsePoint).cache()

var w = Vector.random(D) // current separating plane

for (i <- 1 to ITERATIONS) {
 val gradient = points.map(p =>
 (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)

 w -= gradient
}

println("Final separating plane: " + w)

Homework 6

 def tactic(state: ProofState => (PartialProof, ProofState)) =
 StateAction[ProofState, PartialProof](state)

 def orElimTactic(f: Formula) = tactic {
 (proofState: ProofState) => {
 (f, proofState) match {
 case (p \/ q, ((gamma :- r) :: goals)) =>
 def partialProof(proofs: List[Sequent]) = {
 proofs match {
 case (proofA :: proofB :: proofC :: Nil) =>
 orElim(proofA, proofB, proofC)
 case _ => throw new ProofError("orElim applied to " + proofs)
 }
 }
 (partialProof,
 (gamma :- p \/ q) :: (gamma + p :- r) :: (gamma + q :- r) :: goals)
 case _ => throw TacticError("orElimTactic applied to " + proofState)
 }
 }
 }

 def impliesElimTactic(p: Formula) = tactic {
 (proofState: ProofState) => {
 proofState match {
 case ((gamma :- q) :: goals) =>
 def partialProof(proofs: List[Sequent]) = {
 proofs match {
 case (proofA :: proofB :: Nil) =>
 impliesElim(proofA, proofB)
 case _ => throw new ProofError("impliesElim applied to " + proofs)
 }
 }
 (partialProof, ((gamma :- (p -> q)) :: (gamma :- p) :: goals))
 case _ => throw TacticError("impliesElimTactic applied to " + proofState)
 }
 }
 }

Summary
and

Conclusion

Functional Programming
• A style of programming involving no mutation

• A style of programming in which computations are
represented by passing functions as arguments
and returning them as results

• A style of programming in which the entirety of a
computation is determined by explicit input and
output values

The Substitution Model

• The behavior of purely functional programs can be
understood via the Substitution Model of Evaluation

• Having a rigorous model allows us to reason more
precisely about the behavior of programs

Static Types and Values

• There is a deep connection between computation
of static types and computation of values

• We can think of a computation as having both a
static and dynamic evaluation

Design Recipes

• Categorizing solution based on templates

• Test-driven development

Abstract and
Recursively Defined Datatypes

• Immutable data is often well characterized by this
framework

• Language syntax is defined by the same
framework

• Every abstract datatype can be thought of as
characterizing its own language

Pattern Matching

• Dramatically improves the conciseness of
computations over abstract datatypes

Variance in Types

• Immutable datatypes naturally lead to more
expressive type relationships

• Arrow types

• Immutable collections

Programming Principles

• Keep It Simple

• Don’t Repeat Yourself

First-Class Functions
• Enables significant reduction in code repetition

• Leads to new ways of thinking about and organizing
computations

• map

• reduce

• filter

• flatMap

Monads

• An overarching pattern of organization for many
computations can be found via the concept of
monads

• For-expressions are the syntax of monadic
computation

Monads

• Monads express many computing constructs

• Collections

• Options

• Purely functional state

Continuations

• A unifying construct for control in computation

• Exceptions

• Concurrency

• Pre-emption

The Environment Model

• Facilitates reasoning about mutual recursion

• Facilitates reasoning about state

• Facilitates reasoning about types

• Facilitates reasoning about logics

Alternative Approaches to
Computation

• Lexical vs Dynamic Scoping

• Dynamic scoping is incompatible with static types

• Call-by-Value vs Call-by-Name

• Call-by-Name is in often a better fit for functional
programming

• Traits

• Composable units of computation

Generative Recursion
• Not all computations can be expressed as

structural traversals of abstract datatypes

• But many can!

• Sometimes either domain knowledge or deep
algorithmic insights is needed

• Quicksort, Heaps, Red-Black Trees

Accumulators and Tail
Recursion

• There is far more to accumulators than just simple
tail recursion

• Determine the meaning of your accumulator
variables, and respect that meaning

• Distinct approaches to accumulator meaning
lead to significantly different results

• Tree traversal, peg solitaire

State and Functional
Programming

• Streams

• Call-By-Name-Style lists

• Often an effective alternative to stateful computation

• Memoization

• Using state to improve performance of stateless computation

• The State Monad

• Encapsulate and replay stateful computation, providing initial
state as input

The Curry-Howard
Isomorphism

• There is a deep connection between types and
logical propositions

• There is a deep connection between programs and
logical proofs

Some Scala Libraries of
Note

• Parser combinators

• Actors for concurrency

Tactical Theorem Proving
• One of the driving problems driving the

development of functional programming

• Term-rewriting systems

• A unifying concept for computer science

• Appear in types, models of computation, logic

• Tactics and the state monad

Functional Distributed
Computing

• MapReduce

• Apache Spark and RDDs

• Distributed machine learning

A Functional Programming
Renaissance

• Multiple trends are driving software design toward
functional programming

• Multicore processors

• Big data

Take Advantage of the Work
of the Past

• The Substitution Model

• Lexical scoping

• Closures

• Streams

• Monads

• Memoization

• Continuations

Consider Comp 411
• Application of functional programming to defining

programming languages

• Abstract datatypes to define syntax

• Type checkers to define static semantics

• Interpreters to define dynamic semantics (via a meta-
language)

• Incrementally enhance understanding by removing
available features from the meta-language

Adopt a Sense of Coding
Craftsmanship

• Keep It Simple

• Don’t Repeat Yourself

• Test from the start!

Teach a Class

• There’s no better way to learn a subject

