
COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 16 24 October, 2011

1

Acknowledgments
• Slides from previous offerings of COMP 515 by Prof. Ken

Kennedy
—http://www.cs.rice.edu/~ken/comp515/

2

Compiler Improvement of Register
Usage

Chapter 8 (contd)

3

Scalar Replacement
• Example: Scalar Replacement in

case of loop carried dependence
spanning multiple iterations

!

! DO I = 1, N

! ! A(I) = B(I-1) + B(I+1)

! ENDDO

! t1 = B(0)

! t2 = B(1)

! DO I = 1, N

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = t2

! ! t2 = t3

! ENDDO

• One fewer load for each iteration
for reference to B which had a
loop carried input dependence
spanning 2 iterations

• Invariants maintained were
 t1=B(I-1);t2=B(I);t3=B(I+1)

4

Preloop

Main Loop

Eliminate Scalar Copies
! t1 = B(0)

! t2 = B(1)

! DO I = 1, N

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = t2

! ! t2 = t3

! ENDDO

• Unnecessary register-register
copies

• Unroll loop 3 times

! t1 = B(0)

! t2 = B(1)

! mN3 = MOD(N,3)

! DO I = 1, mN3

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = t2

! ! t2 = t3

! ENDDO

! DO I = mN3 + 1, N, 3

! ! t3 = B(I+1)

! ! A(I) = t1 + t3

! ! t1 = B(I+2)

! ! A(I+1) = t2 + t1

! ! t2 = B(I+3)

! ! A(I+2) = t3 + t2

! ENDDO

5

 DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

! ENDDO

• Dependence pattern before
pruning (including input
dependences)

• Not all edges suggest memory
access savings

Pruning the dependence graph

6

Pruning the dependence graph
DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

ENDDO

• Dashed edges are pruned

• Each reference has at most one
predecessor in the pruned graph

• Generator = source of edge in
pruned graph

7

 DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

! ENDDO

• Dependence pattern before
pruning (including input
dependences)

• Not all edges suggest memory
access savings

DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

ENDDO

• Apply scalar replacement after
pruning the dependence graph

Pruning the dependence graph
t0A = A(0); t1A0 = A(1);

tB1 = B(0); tB2 = B(1);

DO I = 1, N

! ! t1A1 = t0A + tB1

! ! tB3 = B(I+1)

! ! t0A = t1A0 + tB2 + tB3

! ! A(I) = t0A

! ! t1A0 = t1A1

! ! tB1 = tB2

! ! tB2 = tB3

ENDDO

A(N+1) = t1A1

• Only one load and one store per
iteration

8

Pruning the dependence graph
• Prune all anti dependence edges

• Prune flow and input dependence edges that do not represent a
potential reuse

• Prune redundant input dependence edges

• Prune output dependence edges after rest of the pruning is
done

9

Pruning the dependence graph
• Phase 1: Eliminate killed dependences

— When killed dependence is a flow dependence

! ! ! S1: A(I+1) = ...

! ! ! S2: A(I) = ...

! ! ! S3: ... = A(I)

– Store in S2 is a killing store. Flow dependence from S1 to S3 is
pruned

— When killed dependence is an input dependence

! ! ! S1: ... = A(I+1)

! ! ! S2: A(I) = ...

! ! ! S3: ... = A(I-1)

– Store in S2 is a killing store. Input dependence from S1 to S3
is pruned

10

Pruning the dependence graph
• Phase 2: Identify generators

DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

ENDDO

• Any assignment reference with at least one flow dependence
emanating from it to another statement in the loop

• Any use reference with at least one input dependence emanating
from it and no input or flow dependence into it

11

Pruning the dependence graph
• Phase 3: Find name partitions and eliminate input dependences

—Use Typed Fusion
– References as vertices
– An edge joins two references
– Output and anti- dependences are bad edges
– Name of array as type

• Eliminate input dependences between two elements of same
name partition unless source is a generator

12

Pruning the dependence graph
• Special cases

—Reference is in a dependence cycle in the loop

! ! DO I = 1, N

! !

! ! ! A(J) = B(I) + C(I,J)

! !

! ! ! C(I,J) = A(J) + D(I)

! ! ENDDO

• Assign single scalar to the reference in the cycle

• Replace A(J) by a scalar tA and insert A(J)=tA before or after
the loop depending on upward/downward exposed occurrence

13

Pruning the dependence graph
• Special cases: Inconsistent

dependences

! DO I = 1, N

! ! A(I) = A(I-1) + B(I)

! ! A(J) = A(J) + A(I)

! ENDDO

• Store to A(J) kills A(I)

• Only one scalar replacement
possible

! DO I = 1, N

! ! tAI = A(I-1) + B(I)

! ! A(I) = tAI

! ! A(J) = A(J) + tAI

! ENDDO

• This code can be improved
substantially by index set
splitting

14

Pruning the dependence graph
DO I = 1, N

! tAI = A(I-1) + B(I)

! A(I) = tAI

! A(J) = A(J) + tAI

ENDDO

• Split this loop into three
separate parts
— A loop up to J
— Iteration J
— A loop after iteration J to N

tAI = A(0); tAJ = A(J)

JU = MAX(J-1,0)

DO I = 1, JU

! tAI = tAI + B(I); A(I) = tAI

! tAJ = tAJ + tAI

ENDDO

IF(J.GT.0.AND.J.LE.N) THEN

! tAI = tAI + B(I); A(I) = tAI

! tAJ = tAJ + tAI

! tAI = tAJ

ENDIF

DO I = JU+2, N

! tAI = tAI + B(I); A(I) = tAI

! tAJ = tAJ + tAI

ENDDO

A(J) = tAJ

15

Scalar Replacement: Putting it together
1. Prune dependence graph; Apply typed fusion

2. Select a set of name partitions using register pressure
moderation

3. For each selected partition
A) If non-cyclic, replace using set of temporaries
B) If cyclic replace reference with single temporary
C) For each inconsistent dependence

Use index set splitting or insert loads and stores

4. Unroll loop to eliminate scalar copies

16

Scalar Replacement: Case A
DO I = 1, N

! !

! ! A(I+1) = A(I-1) + B(I-1)

! !

! ! A(I) = A(I) + B(I) + B(I+1)

ENDDO

t0A = A(0); t1A0 = A(1);

tB1 = B(0); tB2 = B(1)

DO I = 1, N

! ! t1A1 = t0A + tB1

! ! tB3 = B(I+1)

! ! t0A = t1A0 + tB3 + tB2

! ! A(I) = t0A

! ! t1A0 = t1A1

! ! tB1 = tB2

! ! tB2 = tB3

ENDDO

A(N+1) = t1A1

17

Scalar Replacement: Case B
! ! DO I = 1, N

! !

! ! ! A(J) = B(I) + C(I,J)

! !

! ! ! C(I,J) = A(J) + D(I)

! ! ENDDO

• replace with single temporary...

 DO I = 1, N

! ! ! tA = B(I) + C(I,J)

! ! ! C(I,J) = tA + D(I)

! ! ENDDO

! ! A(J) = tA

18

Scalar Replacement: Case C
DO I = 1, N

! tAI = A(I-1) + B(I)

! A(I) = tAI

! A(J) = A(J) + tAI

ENDDO

• Split this loop into three
separate parts
— A loop up to J

— Iteration J
— A loop after iteration J to N

tAI = A(0); tAJ = A(J)

JU = MAX(J-1,0)

DO I = 1, JU

! tAI = tAI + B(I); A(I) = tAI

! tAJ = tAJ + tAI

ENDDO

IF(J.GT.0.AND.J.LE.N) THEN

! tAI = tAI + B(I); A(I) = tAI

! tAJ = tAJ + tAI

! tAI = tAJ

ENDIF

DO I = JU+2, N

! tAI = tAI + B(I); A(I) = tAI

! tAJ = tAJ + tAI

ENDDO

A(J) = tAJ

19

Experiments on Scalar Replacement

20

Experiments on Scalar Replacement

21

Unroll-and-Jam
DO I = 1, N*2

! DO J = 1, M

! ! A(I) = A(I) + B(J)

! ENDDO

ENDDO

• Can we achieve reuse of
references to B ?

• Use transformation called
Unroll-and-Jam

DO I = 1, N*2, 2

! DO J = 1, M

! ! A(I) = A(I) + B(J)

! ! A(I+1) = A(I+1) + B(J)

! ENDDO

ENDDO

• Unroll outer loop twice and then
fuse the copies of the inner loop

• Brought two uses of B(J)
together

22

Unroll-and-Jam
DO I = 1, N*2, 2

! DO J = 1, M

! ! A(I) = A(I) + B(J)

! ! A(I+1) = A(I+1) + B(J)

! ENDDO

ENDDO

• Apply scalar replacement on this
code

DO I = 1, N*2, 2

! s0 = A(I)

! s1 = A(I+1)

! DO J = 1, M

! ! t = B(J)

! ! s0 = s0 + t

! ! s1 = s1 + t

! ENDDO

! A(I) = s0

! A(I+1) = s1

ENDDO

• Half the number of loads as the
original program

23

Legality of Unroll-and-Jam
• Is unroll-and-jam always legal?

DO I = 1, N*2

! DO J = 1, M

 ! ! A(I+1,J-1) = A(I,J) + B(I,J)

! ENDDO

ENDDO

• Apply unroll-and-jam

DO I = 1, N*2, 2

! DO J = 1, M

! ! ! A(I+1,J-1) = A(I,J) + B(I,J)

! ! ! A(I+2,J-1) = A(I+1,J) + B(I
+1,J)

 ! ENDDO

ENDDO

• This is wrong!!!

24

Legality of Unroll-and-Jam

25

Legality of Unroll-and-Jam
• Direction vector in this example was (<,>)

—This makes loop interchange illegal
—Unroll-and-Jam is loop interchange followed by unrolling inner loop

followed by another loop interchange

• But does loop interchange illegal imply unroll-and-jam illegal ?
NO

26

Legality of Unroll-and-Jam
• Consider this example

DO I = 1, N*2

! DO J = 1, M

 !A(I+2,J-1) = A(I,J) + B(I,J)

 ! ENDDO

ENDDO

• Direction vector is (<,>); still
unroll-and-jam possible because
of distances involved

27

Conditions for legality of unroll-and-jam
• Definition: Unroll-and-jam to factor n consists of unrolling the

outer loop n-1 times and fusing those copies together.

• Theorem: An unroll-and-jam to a factor of n is legal iff there
exists no dependence with direction vector (<,>) such that the
distance for the outer loop is less than n.

28

Unroll-and-jam Algorithm
1. Create preloop

2. Unroll main loop m(the unroll-and-jam factor) times

3. Apply typed fusion to loops within the body of the unrolled loop

4. Apply unroll-and-jam recursively to the inner nested loop

29

Unroll-and-jam example
DO I = 1, N

 DO K = 1, N

 A(I) = A(I) + X(I,K)

 ENDDO

 DO J = 1, M

! DO K = 1, N

 ! ! B(J,K) = B(J,K) + A(I)

 ! ENDDO

 ENDDO

 DO J = 1, M

 C(J,I) = B(J,N)/A(I)

 ENDDO

ENDDO

DO I = mN2+1, N, 2

 DO K = 1, N

 A(I) = A(I) + X(I,K)

 A(I+1) = A(I+1) + X(I+1,K)

 ENDDO

 DO J = 1, M

! DO K = 1, N

 ! B(J,K) = B(J,K) + A(I)

! B(J,K) = B(J,K) + A(I+1)

 ! ENDDO

 ! C(J,I) = B(J,N)/A(I)

 ! C(J,I+1) = B(J,N)/A(I+1)

 ENDDO

ENDDO

30

Unroll-and-jam: Experiments

31

Unroll-and-jam: Experiments

32

Conclusion
• We have learned two memory hierarchy transformations:

—scalar replacement
—unroll-and-jam

• They reduce the number of memory accesses by maximum use
of processor registers

33

COMP 515, Fall 2011 (V.Sarkar)34

Homework #5 (Written Assignment)
1. Solve exercise 8.2 in book

• Due by 5pm on Monday, Oct 31st

• Homework should be turned into Amanda Nokleby, Duncan Hall 3137

• Honor Code Policy: All submitted homeworks are expected to be the
result of your individual effort. You are free to discuss course
material and approaches to problems with your other classmates,
the teaching assistants and the professor, but you should never
misrepresent someone else’s work as your own. If you use any
material from external sources, you must provide proper attribution.

