
COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 19 8 November, 2011

Automatic Selection of

High-Order Transformations in the

IBM XL Fortran Compilers

Vivek Sarkar∗

Rice University

vsarkar@rice.edu

∗ Work done at IBM during 1991 - 1993

1

High-Order Transformations

Traditional optimizations operate on a low-level intermediate

representation that is close to the machine level

High-order transformations operate on a high-level intermediate

representation that is close to the source level

Examples of high-order transformations: loop transformations,

data alignment and padding, inline expansion of procedure

calls, . . .

2

Selection of High-Order Transformations

Improperly selected high-order transformations can degrade

performance to levels worse than unoptimized code.

Traditional optimizations rarely degrade performance.

⇒ automatic selection has to be performed more carefully for

high-order transformations than for traditional optimizations

3

This Work

• Automatic selection of high-order transformations in the

IBM XL Fortran compilers

• Quantitative approach to program optimization using cost

models

• High-order transformations selected for uniprocessor target

include: loop distribution, fusion, interchange, reversal,

skewing, tiling, unrolling, and scalar replacement of array

references

• Design and initial product implementation completed during

1991–1993

Reference: “Automatic Selection of High Order Transformations in the IBM
XL Fortran Compilers”, V. Sarkar, IBM Journal of Res. & Dev., Vol. 41,
No. 3, May 1997. (To appear).

4

Outline of Talk

1. Structure of compiler and optimizer

2. Memory cost analysis

3. Automatic selection of high-order transformations: loop

interchange, loop tiling, loop fusion, scalar replacement,

loop unrolling

4. Experimental results (preliminary)

5. Conclusions and future work

5

Structure of XL Fortran Product Compiler (Version 4)

Translation
to HIR

Input HIR

Translation
from HIR

Code augmentor

Transformed
HIR

Transformed &
augmented HIR

Transformed
intermediate
language

Interprocedural
optimizer

Optimized
intermediate
language

Optimizing
back end

Optimized
RS/6000
executable

Intermediate
Language

Fortran 90
front end

ASTI Optimizer
Analyzer

Scalarizer

Transformer

-qhot

-qipa

-O3

6

Quantitative Approach to Program Optimization

• Compiler optimization is viewed as optimization problems

based on quantitative cost models

• Cost models driven by compiler estimates of execution time

costs, memory costs, execution frequencies (obtained either

by compiler analysis or from execution profiles)

• Cost model depends on computer architecture and

computer system parameters

• Individual program transformations used in different ways to

satisfy different optimization goals

7

High level structure of the ASTI Transformer

8

Steps performed by ASTI Transformer

1. Initialization

2. Loop distribution

3. Identification of perfect loop nests

4. Reduction recognition

5. Locality optimization

6. Loop fusion

7. Loop–invariant scalar replacement

8. Loop unrolling and interleaving

9. Local scalar replacement

10. Transcription — generate transformed HIR

9

Memory Cost Analysis

Consider an innermost perfect nest of h loops:

do i1 = . . .

. . .

do ih = . . .

. . .

end do

. . .

end do

The job of memory cost analysis is to estimate

DLtotal(t1, . . . , th) = # distinct cache lines, and

DPtotal(t1, . . . , th) = # distinct pages

accessed by a (hypothetical) tile of t1 × . . . × th iterations.

10

Motivation for Memory Cost Functions

Assume that DLtotal and DPtotal are small enough so that no

collision and capacity misses occur within a tile i.e.,

DLtotal(t1, . . . , th) ≤ effective cache size

DPtotal(t1, . . . , th) ≤ effective TLB size

The memory cost is then estimated as follows:

COSTtotal = (cache miss penalty) × DLtotal +

(TLB miss penalty) × DPtotal

Our objective is to minimize the memory cost per iteration

which is given by the ratio, COSTtotal/(t1 × . . . × th).

11

Matrix Multiply-Transpose Example

real*8 a(n,n), b(n,n), c(n,n)

. . .

do i1 = 1, n

do i2 = 1, n

do i3 = 1, n

a(i1,i2) = a(i1,i2) + b(i2,i3) * c(i3,i1)

end do

end do

end do

12

Memory Cost Analysis for Matrix Multiply-Transpose

Example

Assume cache line size, L = 32 bytes:

DLtotal(t1, t2, t3) ≈ &8t1/L't2 + &8t2/L't3 + &8t3/L't1

≈ (1 + 8(t1 − 1)/L) t2 + (1 + 8(t2 − 1)/L) t3 +

(1 + 8(t3 − 1)/L) t1

= (0.25t1 + 0.75) t2 + (0.25t2 + 0.75) t3 +

(0.25t3 + 0.75) t1

13

Algorithm for selecting an optimized loop ordering

1. Build a symbolic expression for

F(t1, . . . , th) =
COSTtotal(t1, . . . , th)

t1 × . . . × th

2. Evaluate the h partial derivatives (slopes) of function F ,

δF/δtk , at (t1, . . . , th) = (1, . . . ,1)

A negative slope identifies a loop that carries

temporal/spatial locality

3. Desired ordering is to place loop with most negative slope

in innermost position, and so on.

14

Matrix Initialization example

do 10 i1 = 1, n

do 10 i2 = 1, n

10 a(i1,i2) = 0

For a PowerPC 604 processor:

DLtotal(t1, t2) = (0.25t1 + 0.75)t2
DPtotal(t1, t2) = (0.001953t1 + 0.998047)t2

⇒ COSTtotal(t1, t2) = 17 × DLtotal(t1, t2) + 21 × DPtotal(t1, t2)

= (4.25t1t2 + 12.75t2) + (0.04t1t2 + 20.96t2)

⇒ F(t1, t2) =
COSTtotal

t1t2
=

(

4.25 +
12.75

t1

)

+

(

0.04 +
20.96

t1

)

⇒
δF

δt1
=

−33.71

t21
is < 0 and

δF

δt2
= 0

Desired loop ordering is i2, i1
15

Locality Analysis Approach

Progressive refinement of cache models:

• Unbounded cache – only compulsory misses

Solution: estimate # distinct accesses (DA)

• Fully associative with S lines/sets – also need to estimate

capacity misses

Solution: adjust estimate by identifying locality group

• Direct mapped with S lines/sets – also need to estimate

collision misses

Solution: further adjust estimate by computing cache

utilization efficiency and effective cache size

16

Locality Group

Locality group – largest innermost iteration subspace that is

guaranteed to incur no capacity or collision misses if execution

is started with a clean/empty cache.

Locality group is specified by two parameters (m, B):

1. m ≥ 0, number of innermost loops in locality group.

m = 0 indicates that a single iteration overflows cache

2. B, largest number of iterations (block size) of the

outermost loop in locality group.

B is only defined when m ≥ 1

17

Using Locality Group to Estimate # Misses for a

Fully-associative Cache

Summary of approach:

• Estimate # compulsory misses for single instance of locality

group

• Ignore reuse among multiple instances of locality group

• Use pro-rated # misses/iteration from single instance to

extrapolate to other instances of locality group

18

Set Conflicts and Effective Cache Size

DO 10 i = . . .

10 A(T*i + c) = . . .

We are interested in estimating
η(T) = cache utilization efficiency of stride T

= fraction of sets accessed over a large no. of iterations

Three cases of interest:

Case 1: T <= 2b ⇒ η(T) = 1.0

Case 2: T is a multiple of 2b ⇒ η(T) = 1
gcd(T/2b,2s)

19

Set Conflicts and Effective Cache Size (contd.)

Case 3: Otherwise

Find smallest n ≥ 1 that satisfies

mod(n × T,2b+s) < 2b or mod(n × T,2b+s) > 2b+s − 2b

⇒ every n’th access will map to the same set

⇒ η(T) = n
2s

NOTE: more precise estimates are possible if cache block

alignment offset, number of loop iterations, and degree of

cache associativity are also taken into account

20

Example of Set Conflicts

real*8 A(N,N)

do 10 i = 1, N

do 10 j = 1, N

do 10 k = 1, N

10 . . . A(i,k)

Simulate A(i,k) reference

for cache parameters, 2b =

16, 2s = 32, 2d = 4, and for

96 ≤ N ≥ 160 100 110 120 130 140 150 160

10
20
30
40
50
60
70
80
90
100

% miss
ratio

N

∗

!

!

!

!

!

∗
∗

!

!

! !
!

!

!
!

!

!

∗

!

!

!

∗

!

!

!

∗

!

!

!

!

!

∗

!

!

!

!

!

!

!

!

!

!
! ! !

!

!

! !

∗

!

!

!

!

!

!

!

!

!

!

!

!

∗∗

!

Set conflict analysis identifies the main outlying points,

N = 96, 102, 103, 114, 118, 122, 128, 146, 159, 160

21

COMP 515, Fall 2011 (V.Sarkar)

Homework #6 (Written Assignment)
Read Section 6 (Memory Cost Analysis) of the following paper discussed in today’s
lecture, especially the partial derivative analysis on pg 15 (printed page 247):

•Automatic Selection of High Order Transformations in the IBM XL Fortran Compilers. Vivek Sarkar. IBM Journal of
Research and Development, 41(3), May 1997

1. Compute the memory cost function and partial derivatives for loops I and J in
the following loop nest at the start of Section 9.3.5 of the course textbook.
Which loops carry locality? Can all of them be moved to the innermost position?

DO I = 1, N
 DO J = 1, M
 A(J+1) = (A(J)+A(J+1))/2
 ENDDO
ENDDO

2.Compute the memory cost and partial derivatives for loops I and J in the following
transformed loop nest (after skewing) in Section 9.3.5 of the course textbook.
Which loops carry locality? Can all of them be moved to the innermost position?

DO I = 1, N
 DO j = I, M + I - 1
 A(j-I+2) = (A(j-I+1)+A(j-I+2))/2
 ENDDO
ENDDO

COMP 515, Fall 2011 (V.Sarkar)

Homework #6 (contd)
• Due by 5pm on Tuesday, November 15th

• Homework should be turned into Amanda Nokleby, Duncan Hall 3137

• Honor Code Policy: All submitted homeworks are expected to be the
result of your individual effort. You are free to discuss course
material and approaches to problems with your other classmates,
the teaching assistants and the professor, but you should never
misrepresent someone else’s work as your own. If you use any
material from external sources, you must provide proper attribution.

