COMP 515: Advanced Compilation for Vector and Parallel Processors

Prof. Krishna Palem
Prof. Vivek Sarkar
Department of Computer Science
Rice University
\{palem,vsarkar\}@rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/COMP515

Dependence: Theory and Practice

Allen and Kennedy, Chapter 2

Distance Vectors (Recap)

- Consider a dependence in a loop nest of n loops
- Statement S_{1} on iteration i is the source of the dependence
- Statement S_{2} on iteration j is the sink of the dependence
- The distance vector is a vector of length $n d(i, j)$ such that: $d(i, j)_{k}=$ $j_{k}-i_{k}$
- We normalize distance vectors for loops in which the index step size is not equal to 1
- It's usually simpler to convert all loops to have a step of +1 before computing distance vectors

Direction Vectors (Recap)

- Definition 2.10 in the book:

Suppose that there is a dependence from statement S_{1} on iteration i of a loop nest of n loops and statement S_{2} on iteration j, then the dependence direction vector is $D(i, j)$ is defined as a vector of length n such that

$$
D(i, j)_{k}=\begin{array}{ll}
"<" \text { if } i_{k}<j_{k} & \text { equivalently, if } d(i, j)_{k}>0 \\
"=" \text { if } i_{k}=j_{k} & \text { equivalently, if } d(i, j)_{k}=0 \\
">" \text { if } i_{k}>j_{k} & \text { equivalently, if } d(i, j)_{k}<0
\end{array}
$$

- A direction vector element summarizes a set of distances
- "<" summarizes the set $\{1,2,3, \ldots\}$
- "=" summarizes the singleton set $\{0\}$
- ">" summarizes the set $\{-1,-2,-3, \ldots\}$
- and so on ...

Implausible Distance \& Direction Vectors

- A distance vector is implausible if its leftmost nonzero element is negative i.e., if the vector is lexicographically less than the zero vector
- Likewise, a direction vector is implausible if its leftmost non "=" component is not "く"
- No dependence in a sequential program can have an implausible distance or direction vector as this would imply that the sink of the dependence occurs before the source.

Direction Vector Transformation

- Theorem 2.3. Direction Vector Transformation. Let T be a transformation that is applied to a loop nest and that does not rearrange the statements in the body of the loop. Then the transformation is valid if, after it is applied, none of the direction vectors for dependences with source and sink in the nest has a leftmost non-"=" component that is ">" i.e., none of the transformed direction vectors become implausible.
- Follows from Fundamental Theorem of Dependence:
- All dependences exist
- None of the dependences have been reversed

Loop-carried and Loop-independent Dependences

- If in a loop statement S_{2} depends on S_{1}, then there are two possible ways of this dependence occurring:

1. S_{1} and S_{2} execute on different iterations
-This is called a loop-carried dependence.
2. S_{1} and S_{2} execute on the same iteration
-This is called a loop-independent dependence.

Loop-carried dependence

- Definition 2.11
- Statement S_{2} has a loop-carried dependence on statement S_{1} if and only if S_{1} references location M on iteration i, S_{2} references M on iteration j and $d(i, j)>0$ i.e., $D(i, j)$ contains a "<" as leftmost non " $=$ " component and is lexicographically positive.

Example:
DO I = 1, N
$S_{1} \quad A(I+1)=F(I)$
$S_{2} \quad \mathrm{~F}(\mathrm{I}+1)=\mathrm{A}(\mathrm{I})$
EnDDO

Loop-carried dependence

- Level of a loop-carried dependence is the index of the leftmost non-"=" of $D(i, j)$ for the dependence.
For instance:

DO $J=1,10$
DO $K=1,10$
$S_{1} \quad A(I, J, K+1)=A(I, J, K)$
ENDDO
ENDDO
ENDDO

- Direction vector for $S 1$ is ($=,=$, , $)$
- Level of the dependence is 3
- A level-k dependence between S_{1} and S_{2} is denoted by $S_{1} \delta_{k} S_{2}$

Loop-carried Transformations

- Theorem 2.4 Any reordering transformation that (1) preserves the iteration order of the level-k loop, (2) does not interchange any loop at level < k to a level $>k$, and (3) does not interchange any loop at level >k to a position < k, must preserve all level-k dependences.
- Proof:
$-D(i, j)$ has a " $<$ " in the $k^{\text {th }}$ position and " $=$ " in positions 1 through k-1
\Rightarrow Source and sink of dependence are in the same iteration of loops 1 through k-1
\Rightarrow Cannot change the sense of the dependence by a reordering of iterations of those loops
- As a result of the theorem, powerful transformations can be applied

Loop-carried Transformations

Example:

S_{1}	A ($\mathrm{I}+1$)
S_{2}	F (I+1)

can be transformed to:

```
    DO I = 1, 10
Si F(I+1) = A(I)
S
ENDDO
```


Loop-independent dependences

- Definition 2.15. Statement S_{2} has a loop-independent dependence on statement S_{1} if and only if there exist two iteration vectors i and j such that:

1) Statement S_{1} refers to memory location M on iteration i, S_{2} refers to M on iteration j, and $i=j$.
2) There is a control flow path from S_{1} to S_{2} within the iteration.

Example:

```
DO I = 1, 10
\(S_{1} \quad A(I)=\ldots\)
\(S_{2} \quad \cdots=A(I)\)
```

ENDDO

Loop-independent dependences

More complicated example:

```
DO I = 1, 9
\(S_{1} \quad A(I)=\ldots\)
\(S_{2} \quad \cdots \quad=A(10-I)\)
```

ENDDO

- No common loop is necessary. For instance:

```
DO I = 1, 10
S I A(I) = ...
ENDDO
DO I = 1, 10
S
ENDDO
```


Loop-independent dependences

- Theorem 2.5. If there is a loop-independent dependence from S_{1} to S_{2}, any reordering transformation that does not move statement instances between iterations and preserves the relative order of S_{1} and S_{2} in the loop body preserves that dependence.
- S_{2} depends on S_{1} with a loop independent dependence is denoted by $S_{1} \delta_{\infty} S_{2}$
- Note that the direction vector will have entries that are all "=" for loop independent dependences

Simple Dependence Testing

- Theorem 2.7: Let a and b be iteration vectors within the iteration space of the following loop nest:

```
DO \(i_{1}=L_{1}, U_{1}, S_{1}\)
    DO \(i_{2}=L_{2}, U_{2}, S_{2}\)
            DO \(i_{n}=L_{n}, U_{n}, S_{n}\)
    \(S_{1} \quad A\left(f_{1}\left(i_{1}, \ldots, i_{n}\right), \ldots, f_{m}\left(i_{1}, \ldots, i_{n}\right)\right)=\ldots\)
    \(S_{2} \quad \ldots=A\left(g_{1}\left(i_{1}, \ldots, i_{n}\right), \ldots, g_{m}\left(i_{1}, \ldots, i_{n}\right)\right)\)
```

 ENDDO
 ENDDO
 ENDDO

Simple Dependence Testing

```
DO i}\mp@subsup{i}{1}{}=\mp@subsup{L}{1}{},\mp@subsup{U}{1}{},\mp@subsup{S}{1}{
```

 \(\begin{array}{ll} & D O i_{n}=L_{n}, U_{n}, S_{n} \\ S_{1} & A\left(f_{1}\left(i_{1}, \ldots, i_{n}\right), \ldots, f_{m}\left(i_{1}, \ldots, i_{n}\right)\right)=\ldots \\ S_{2} & \ldots=A\left(g_{1}\left(i_{1}, \ldots, i_{n}\right), \ldots, g_{m}\left(i_{1}, \ldots, i_{n}\right)\right)\end{array}\)
 ENDDO
 ENDDO
 ENDDO

- A dependence exists from S_{1} to S_{2} if and only if there exist values of α and β such that (1) α is lexicographically less than or equal to β and (2) the following system of dependence equations is satisfied:

$$
f_{i}(\alpha)=g_{i}(\beta) \text { for all } i, 1 \leq i \leq m
$$

- Direct application of Loop Dependence Theorem

