
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Krishna Palem
Prof. Vivek Sarkar
Department of Computer Science
Rice University
{palem,vsarkar}@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 9 1 October 2013

2

Acknowledgments!
•  Slides from previous offerings of COMP 515 by Prof. Ken

Kennedy
— http://www.cs.rice.edu/~ken/comp515/

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
3

Homework 1: Solution to Problem 2.2!
DO K = 1, 100

 DO J = 1, 100

 DO I = 1, 100

 A(I+1,J,K) = A(I,J,5) + B

 END DO

 END DO

END DO

Consider flow dependence from iteration (k,j,i) to iteration (k’,j’,i’)
•  Occurs when k=5, j=j’, i+1=i’. Also k ≤ k’ for all plausible flow

dependences direction vector for flow dependence must be (≤,=,<)
Consider anti dependence from iteration (k,j,i) to iteration (k’,j’,i’)
•  Occurs when 5=k’, j=j’, i=i’+1. Also k < k’ for all plausible anti

dependences direction vector for anti dependence must be (<,=,>)
Consider output dependence from iteration (k,j,i) to iteration (k’,j’,i’)
•  Occurs when k=k’, j=j’, i+1=i’+1. Not possible for a loop-carried

dependence. no output dependence

A statement with a
single lval cannot have
a loop-independent flow
or output dependence

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
4

Homework 1: Solution to Problem 2.3!
Recap: dependence vectors for loop nest in Problem 2.2
= { (≤,=,<), (<,=,>) }
= { (<,=,<), (=,=,<), (<,=,>) }

•  Note that the K and I loop both carry dependences, but the middle J

loop does not. Therefore, the J loop can be executed in parallel as
follows:

DO K = 1, 100

 PARALLEL DO J = 1, 100 ! Parallel loop

 DO I = 1, 100

 A(I+1,J,K) = A(I,J,5) + B

 END DO

 END PARALLEL DO

END DO

5

 
Dependence: Theory and Practice

(Loop Distribution, Vectorization)

Algorithm)
!

Allen and Kennedy, Chapter 2

6

Loop Distribution!
•  Can statements in loops which carry dependences be

vectorized?
 D0 I = 1, N

S1 A(I+1) = B(I) + C

S2 D(I) = A(I) + E

 ENDDO

•  Dependence: S1 δ1 S2 can be converted to:

S1 A(2:N+1) = B(1:N) + C

S2 D(1:N) = A(1:N) + E

6

7

Loop Distribution!
DO I = 1, N

S1 A(I+1) = B(I) + C

S2 D(I) = A(I) + E

 ENDDO

•  transformed to:
DO I = 1, N

S1 A(I+1) = B(I) + C
ENDDO
DO I = 1, N
S2 D(I) = A(I) + E
ENDDO

•  leads to:
S1 A(2:N+1) = B(1:N) + C

S2 D(1:N) = A(1:N) + E

8

Loop Distribution!
•  Loop distribution fails if there is a cycle of

dependences
DO I = 1, N

S1 A(I+1) = B(I) + C

S2 B(I+1) = A(I) + E

ENDDO

S1 δ1 S2 and S2 δ1 S1

•  What about:
DO I = 1, N

S1 B(I) = A(I) + E

S2 A(I+1) = B(I) + C

ENDDO

8

9

Simple Vectorization Algorithm!
procedure vectorize (L, D)
// L is the maximal loop nest containing the statement.

// D is the dependence graph for statements in L.

find the set {S1, S2, ... , Sm} of maximal strongly-connected regions in the dependence
graph D restricted to L (Tarjan);

construct Lp from L by reducing each Si to a single node and compute Dp, the
dependence graph naturally induced on Lp by D;

let {p1, p2, ... , pm} be the m nodes of Lp numbered in an order consistent with Dp (use
topological sort);

 for i = 1 to m do begin
 if pi is a dependence cycle then

generate a DO-loop nest around the statements in pi;
 else

directly rewrite pi in Fortran 90, vectorizing it with respect to every loop
containing it;

 end

end vectorize

9

10

Problems With Simple Vectorization!
 DO I = 1, N

 DO J = 1, M

S1 A(I+1,J) = A(I,J) + B

 ENDDO

 ENDDO

•  Dependence from S1 to itself with d(i, j) = (1,0)
•  Key observation: Since dependence is at level 1, we can

vectorize the inner loop!
•  Can be converted to:

 DO I = 1, N

S1 A(I+1,1:M) = A(I,1:M) + B

 ENDDO

•  The simple algorithm does not capitalize on such
opportunities

10

11

Advanced Vectorization Algorithm!
procedure codegen(R, k, D);
// R is the region for which we must generate code.
// k is the minimum nesting level of possible parallel loops.
// D is the dependence graph among statements in R..
find the set {S1, S2, ... , Sm} of maximal strongly-connected

regions in the dependence graph D restricted to R;
construct Rp from R by reducing each Si to a single node and

compute Dp, the dependence graph naturally induced on Rp by D;
let {p1, p2, ... , pm} be the m nodes of Rp numbered in an order

consistent with Dp (use topological sort to do the numbering);
for i = 1 to m do begin

 if pi is cyclic then begin
generate a level-k DO statement;
let Di be the dependence graph consisting of all dependence edges in D that are at level

k+1 or greater and are internal to pi;
codegen (pi, k+1, Di);
generate the level-k ENDDO statement;

 end
 else

generate a vector statement for pi in r(pi)-k+1 dimensions, where r (pi) is the number of loops containing pi;
end

11

12

Advanced Vectorization Algorithm!
DO I = 1, 100

S1 X(I) = Y(I) + 10

 DO J = 1, 100

S2 B(J) = A(J,N)

 DO K = 1, 100

S3 A(J+1,K)=B(J)+C(J,K)

 ENDDO

S4 Y(I+J) = A(J+1, N)

 ENDDO

ENDDO

13

Advanced Vectorization Algorithm!
DO I = 1, 100

S1 X(I) = Y(I) + 10

 DO J = 1, 100

S2 B(J) = A(J,N)

 DO K = 1, 100

S3 A(J+1,K)=B(J)+C(J,K)

 ENDDO

S4 Y(I+J) = A(J+1, N)

 ENDDO

ENDDO

Simple dependence testing procedure:
True dependence from S4 to S1
I0 + J = I0 + ΔI
⇒ ΔI = J
As J is always positive
 ⇒ Direction is “<”

13

14

Advanced Vectorization Algorithm!
DO I = 1, 100

S1 X(I) = Y(I) + 10

 DO J = 1, 100

S2 B(J) = A(J,N)

 DO K = 1, 100

S3 A(J+1,K)=B(J)+C(J,K)

 ENDDO

S4 Y(I+J) = A(J+1, N)

 ENDDO

ENDDO

S2 and S3: dependence via B(J)
I does not occur in either subscript (D.V = *)
We get:
J0 = J0 + ΔJ
⇒ ΔJ = 0
⇒ Direction vectors = (*, =)

14

15

Advanced Vectorization Algorithm!

DO I = 1, 100
S1 X(I) = Y(I) + 10
 DO J = 1, 100
S2 B(J) = A(J,N)

 DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

 ENDDO
S4 Y(I+J) = A(J+1, N)
 ENDDO
ENDDO

DO I = 1, 100
 codegen({S2, S3, S4}, 2})
ENDDO
X(1:100) = Y(1:100) + 10

•  codegen called at the outermost level

•  S1 will be vectorized, and moved
later due to topological sort

16

Advanced Vectorization Algorithm!

DO I = 1, 100
 DO J = 1, 100
 codegen({S2, S3}, 3})

 ENDDO
S4 Y(I+1:I+100) = A(2:101,N)
ENDDO

X(1:100) = Y(1:100) + 10

•  codegen ({S2, S3, S4}, 2})

•  level-1 dependences are stripped
off

17

Advanced Vectorization Algorithm!

•  codegen ({S2, S3}, 3})

•  level-2 dependences are stripped
off

DO I = 1, 100
S1 X(I) = Y(I) + 10
 DO J = 1, 100
S2 B(J) = A(J,N)

 DO K = 1, 100
S3 A(J+1,K)=B(J)
+C(J,K)

 ENDDO
S4 Y(I+J) = A(J+1, N)
 ENDDO
ENDDO

DO I = 1, 100
 DO J = 1, 100
 B(J) = A(J,N)
 A(J+1,1:100)=B(J)+C(J,1:100)
 ENDDO

 Y(I+1:I+100) = A(2:101,N)

ENDDO

X(1:100) = Y(1:100) + 10

18

Enhancing Fine-Grained Parallelism!

Chapter 5 of Allen and Kennedy

19

Fine-Grained Parallelism!

Techniques to enhance fine-grained parallelism:
•  Loop Interchange

•  Scalar Expansion

•  Scalar Renaming
•  Array Renaming

20

Loop Shifting (Permutation)!
•  Motivation: Identify loops which can be moved and interchange them to
“optimal” nesting levels

•  Theorem 5.3 In a perfect loop nest, if loops at level i, i+1,...,i+n
carry no dependence, it is always legal to shift these loops inside of
loop i+n+1. Furthermore, these loops will not carry any dependences
in their new position.

20

21

Loop Shifting!
 DO I = 1, N
 DO J = 1, N

 DO K = 1, N

S A(I,J) = A(I,J) + B(I,K)*C(K,J)

 ENDDO

 ENDDO

 ENDDO

•  S has true, anti and output dependences on itself, hence
codegen will fail as recurrence exists at innermost level

•  Use loop shifting to shift loops I and J inside loop K:
 DO K = 1, N

 DO I = 1, N

 DO J = 1, N

S A(I,J) = A(I,J) + B(I,K)*C(K,J)

 ENDDO

 ENDDO

 ENDDO

 I J K
(=, =, <)

22

Loop Shifting!
 DO K= 1, N

 DO I = 1, N

 DO J = 1, N

S A(I,J) = A(I,J) + B(I,K)*C(K,J)

 ENDDO

 ENDDO

 ENDDO

codegen vectorizes to:

 DO K = 1, N

 A(1:N,1:N) = A(1:N,1:N) + SPREAD(B(1:N,K),2)*SPREAD(C(K,1:N),1)

 ENDDO

 K I J
(<, =, =)

22

23

Loop Selection!
•  Loop Shifting doesn’t always find the best loop to move. Consider:

 DO I = 1, N
 DO J = 1, M

S A(I+1,J+1) = A(I,J) + A(I+1,J)

 ENDDO

 ENDDO

•  Direction matrix: < <
 = <

•  Loop shifting algorithm will fail to uncover vector loops; however,
interchanging the loops can lead to:

 DO J = 1, M

 A(2:N+1,J+1) = A(1:N,J) + A(2:N+1,J)

 ENDDO

•  Need a more general algorithm

< <

< =

23

24

Loop Selection!
•  Loop selection:

— Select a loop at nesting level p ≥ k that can be safely moved
outward to level k and shift the loops at level k, k+1, …, p-1 inside
it

K P P K

… … … …

25

Fully Permutable Loop Nest!
•  A contiguous set of k ≥ 1 loops, ij,…,ij+k-1 is fully permutable if

all permutations of ij,…,ij+k-1are legal

•  Data dependence test: Loops ij,…,ij+k-1 are fully permutable if
for each dependence vector (d1,…,dn) carried at levels j … j
+k-1, each of dj,…,dj+k-1 is non-negative

•  Fundamental result (to be discussed later in course): a set of k
fully permutable loops can be transformed using only
Interchange, Reversal and Skewing transformations into an
equivalent set of k loops where k-1 of the loops are parallel

25

26

Scalar Expansion and its use in Removing Anti and
Output Dependences!

 DO I = 1, N
S1 T = A(I)

S2 A(I) = B(I)

S3 B(I) = T

 ENDDO

•  Scalar Expansion:
 DO I = 1, N

S1 T$(I) = A(I)

S2 A(I) = B(I)

S3 B(I) = T$(I)

 ENDDO

 T = T$(N)

•  leads to:

26

S1 T$(1:N) = A(1:N)

S2 A(1:N) = B(1:N)

S3 B(1:N) = T$(1:N)

 T = T$(N)

27

Scalar Expansion!
•  However, not useful in removing true dependences. Consider:
 DO I = 1, N
 T = T + A(I) + A(I+1)

 A(I) = T

 ENDDO

•  Scalar expansion gives us:
 T$(0) = T

 DO I = 1, N

S1 T$(I) = T$(I-1) + A(I) + A(I+1)

S2 A(I) = T$(I)

 ENDDO

 T = T$(N)

27

28

Scalar Expansion: Safety!
•  Scalar expansion is always safe
•  When is it useful?

— Brute force approach: Expand all scalars, vectorize, shrink all
unnecessary expansions.

— However, we want to predict when expansion is useful i.e., when
scalar expansion can enable a dependence edge to be deleted

•  Dependences due to reuse of memory location vs. reuse of
values
— Dependences due to reuse of values must be preserved (true

dependences)
— Dependences due to reuse of memory location can be deleted by

expansion (anti & output dependences)
–  This is also why functional languages are easier to parallelize,

at the cost of increased memory overhead

28

29

Scalar Expansion: Covering Definitions!
•  A definition D of a scalar S is a covering definition for loop L

if a definition of S placed at the beginning of L reaches no
uses of S that occur past D.

 DO I = 1, 100

S1 T = X(I)

S2 Y(I) = T

 ENDDO

 DO I = 1, 100

 IF (A(I) .GT. 0) THEN

S1 T = X(I)

S2 Y(I) = T

 ENDIF

 ENDDO

covering

covering

29

30

Scalar Expansion: Covering Definitions!
•  A covering definition does not always exist:

 DO I = 1, 100

 IF (A(I) .GT. 0) THEN

S1 T = X(I)

 ENDIF

S2 Y(I) = T

 ENDDO

31

Scalar Expansion: Covering Definitions!
•  We will consider a collection of covering definitions
 DO I = 1, 100

 IF (X(I) .GT. 0) THEN

S1 T = X(I)

 ELSE

S2 T = -X(I)

 ENDIF

S3 Y(I) = T

 ENDDO

SSA-based definition

•  There is a collection C of covering definitions for T in a loop if either:
— There exists no φ-function at the beginning of the loop that merges versions

of T from outside the loop with versions defined in the loop, or,
— The φ-function within the loop has no SSA edge to any φ-function including

itself

31

32

Scalar Expansion: Covering Definitions!
•  Remember the loop which had no covering definition:
 DO I = 1, 100

 IF (A(I) .GT. 0) THEN

S1 T = X(I)

 ENDIF

S2 Y(I) = T

 ENDDO

•  To form a collection of covering definitions, we can insert dummy
assignments:

 DO I = 1, 100

 IF (A(I) .GT. 0) THEN

S1 T = X(I)

 ELSE

S2 T = T

 ENDIF

S3 Y(I) = T

 ENDDO

32

33

Scalar Expansion: SSA-based Algorithm!
Given the collection of covering definitions, we can

carry out scalar expansion for a normalized loop:
•  Create an array T$ of appropriate length
•  For each S in the covering definition collection C, replace the T

on the left-hand side by T$(I).
•  For every other definition of T and every use of T in the loop

body reachable by SSA edges that do not pass through S0, the
φ-function at the beginning of the loop, replace T by T$(I).

•  For every use prior to a covering definition (direct successors
of S0 in the SSA graph), replace T by T$(I-1).

•  If S0 is not null, then insert T$(0) = T before the loop.
•  If there is an SSA edge from any definition in the loop to a

use outside the loop, insert T = T$(U) after the loop, were U
is the loop upper bound.

34

Scalar Expansion: Covering Definitions!

 DO I = 1, 100

 IF (A(I) .GT. 0) THEN

S1 T = X(I)

 ENDIF

S2 Y(I) = T

 ENDDO

DO I = 1, 100
 IF (A(I) .GT. 0) THEN
S1 T = X(I)
 ELSE
S2 T = T
 ENDIF
S3 Y(I) = T
 ENDDO

T$(0) = T
DO I = 1, 100
 IF (A(I) .GT. 0) THEN
S1 T$(I) = X(I)
 ELSE
S2 T$(I) = T$(I-1)
 ENDIF
S3 Y(I) = T$(I)
ENDDO

After inserting covering definitions:

After scalar expansion:

35

Deletable Dependences!
•  Uses of T before covering definitions are expanded as

T$(I - 1)

•  All other uses are expanded as T$(I)
•  The deletable dependences are:

— Backward carried antidependences
— Backward carried output dependences
— Forward carried output dependences
— Loop-independent antidependences into the covering definition
— Loop-carried true dependences from a covering definition to a use

after the covering definition

35

36

Scalar Expansion: Drawbacks!
•  Expansion increases memory requirements
•  Solutions:

— Expand in a single loop
— Strip mine loop before expansion
— Forward substitution:

 DO I = 1, N
 T = A(I) + A(I+1)

 A(I) = T + B(I)

 ENDDO

 DO I = 1, N

 A(I) = A(I) + A(I+1) + B(I)

 ENDDO

36

37

Scalar Renaming!
 DO I = 1, 100
S1 T = A(I) + B(I)

S2 C(I) = T + T

S3 T = D(I) - B(I)

S4 A(I+1) = T * T

 ENDDO

•  Renaming scalar T:
DO I = 1, 100

S1 T1 = A(I) + B(I)

S2 C(I) = T1 + T1

S3 T2 = D(I) - B(I)

S4 A(I+1) = T2 * T2

 ENDDO

37

38

Scalar Renaming!
•  will lead to:
S3 T2$(1:100) = D(1:100) - B(1:100)

S4 A(2:101) = T2$(1:100) * T2$(1:100)

S1 T1$(1:100) = A(1:100) + B(1:100)

S2 C(1:100) = T1$(1:100) + T1$(1:100)

 T = T2$(100)

39

Scalar Renaming!
•  Renaming algorithm partitions all definitions and uses into equivalent

classes, each of which can occupy different memory locations.

•  Use the definition-use graph to:
— Pick definition
— Add all uses that the definition reaches to the equivalence class
— Add all definitions that reach any of the uses…
— ..until fixed point is reached

•  Example:
 IF (…) THEN

 S1 T = …

 ELSE

 S2 T = …

 ENDIF

 S3 … = T

 S4 T = …

 S5 … = T

 IF (…) THEN
 T1 = …

 ELSE

 T1 = …

 ENDIF
 … = T1

 T2 = …

 … = T2

39

40

Scalar Renaming: Profitability!
•  Scalar renaming will break recurrences in which a loop-

independent output dependence or anti-dependence is a critical
element of a cycle

•  Relatively cheap to use scalar renaming

•  Usually done by compilers when calculating live ranges for
register allocation

41

Array Renaming!

 DO I = 1, N

S1 A(I) = A(I-1) + X

S2 Y(I) = A(I) + Z

S3 A(I) = B(I) + C

 ENDDO

•  S1 δ∞ S2 S2 δ∞-1 S3 S3 δ1 S1 S1 δ∞0 S3

•  Rename A(I) to A’(I):
 DO I = 1, N

S1 A’(I) = A(I-1) + X

S2 Y(I) = A’(I) + Z

S3 A(I) = B(I) + C

 ENDDO

•  Dependences remaining: S1 δ∞ S2 and S3 δ1 S1

41

42

Array Renaming: Profitability!
•  Examining dependence graph and determining minimum set of

critical edges to break a recurrence is NP-complete!

•  Solution: determine edges that are removed by array renaming
and analyze effects on dependence graph

•  procedure array_partition:
— Assumes no control flow in loop body
— Identifies collections of references to arrays which refer to the

same value
— Identifies deletable output dependences and antidependences

•  Use this procedure to generate code
— Minimize amount of copying back to the “original” array at the

beginning and the end

42

43

Homework #3 (Written Assignment)!
1. Solve exercise 3.6 in book

— This is case 4 of Lemma 3.3
— Read Definitions 3.1, 3.2, 3.3 and Lemmas 3.1, 3.2, 3.3 before starting

•  Due in class on Tuesday, Oct 8th

•  Honor Code Policy: All submitted homeworks are expected to be the
result of your individual effort. You are free to discuss course
material and approaches to problems with your other classmates,
the teaching assistants and the professor, but you should never
misrepresent someone else’s work as your own. If you use any
material from external sources, you must provide proper
attribution.

