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Homework 1:  Solution to Problem 2.2!
DO K = 1, 100 

  DO J = 1, 100 

    DO I = 1, 100 

      A(I+1,J,K) = A(I,J,5) + B 

    END DO 

  END DO 

END DO 

Consider flow dependence from iteration (k,j,i) to iteration (k’,j’,i’) 
•  Occurs when k=5, j=j’, i+1=i’.  Also k ≤ k’ for all plausible flow 

dependences  direction vector for flow dependence must be (≤,=,<) 
Consider anti dependence from iteration (k,j,i) to iteration (k’,j’,i’) 
•  Occurs when 5=k’, j=j’, i=i’+1.  Also k < k’ for all plausible anti 

dependences  direction vector for anti dependence must be (<,=,>) 
Consider output dependence from iteration (k,j,i) to iteration (k’,j’,i’) 
•  Occurs when k=k’, j=j’, i+1=i’+1.  Not possible for a loop-carried 

dependence.   no output dependence 
 
 

 
 

A statement with a 
single lval cannot have 
a loop-independent flow 
or output dependence 
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Homework 1:  Solution to Problem 2.3!
Recap: dependence vectors for loop nest in Problem 2.2 
= { (≤,=,<), (<,=,>) }  
= { (<,=,<), (=,=,<), (<,=,>) }  
 
•  Note that the K and I loop both carry dependences, but the middle J 

loop does not.  Therefore, the J loop can be executed in parallel as 
follows: 

DO K = 1, 100 

  PARALLEL DO J = 1, 100  ! Parallel loop 

    DO I = 1, 100 

      A(I+1,J,K) = A(I,J,5) + B 

    END DO 

  END PARALLEL DO 

END DO 
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Dependence: Theory and Practice 

 
(Loop Distribution, Vectorization) 

Algorithm) 
!

Allen and Kennedy, Chapter 2 
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Loop Distribution!
•  Can statements in loops which carry dependences be 

vectorized? 
  D0 I = 1, N 

S1   A(I+1) = B(I) + C 

S2   D(I) = A(I) + E 

 ENDDO 

•  Dependence: S1 δ1 S2 can be converted to: 

S1    A(2:N+1) = B(1:N) + C 

S2    D(1:N) = A(1:N) + E 
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Loop Distribution!
DO I = 1, N 

S1   A(I+1) = B(I) + C 

S2   D(I) = A(I) + E 

 ENDDO 

•    transformed to: 
DO I = 1, N 

S1   A(I+1) = B(I) + C 
ENDDO 
DO I = 1, N 
S2      D(I) = A(I) + E 
ENDDO 

•    leads to: 
S1   A(2:N+1) = B(1:N) + C 

S2   D(1:N) = A(1:N) + E 
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Loop Distribution!
•  Loop distribution fails if there is a cycle of 

dependences 
DO I = 1, N 

S1   A(I+1) = B(I) + C 

S2   B(I+1) = A(I) + E 

ENDDO 

S1 δ1 S2     and    S2 δ1 S1  

 

•  What about:  
DO I = 1, N 

S1      B(I) = A(I) + E 

S2      A(I+1) = B(I) + C 

ENDDO 
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Simple Vectorization Algorithm!
procedure vectorize (L, D) 
// L is the maximal loop nest containing the statement.  

// D is the dependence graph for statements in L.  

find the set {S1, S2, ... , Sm} of maximal strongly-connected regions in the dependence 
graph D restricted to L  (Tarjan); 

construct Lp from L by reducing each Si to a single node and compute Dp, the 
dependence graph naturally induced on Lp by D; 

let {p1, p2, ... , pm} be the m nodes of Lp numbered in an order consistent with Dp (use 
topological sort); 
  
 for i = 1 to m do begin 
   if pi is a dependence cycle then 

generate a DO-loop nest around the statements in pi; 
   else 

directly rewrite pi in Fortran 90, vectorizing it with respect to every loop 
containing it; 

   end 

end vectorize 
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Problems With Simple Vectorization!
 DO I = 1, N 

   DO J = 1, M 

S1    A(I+1,J) = A(I,J) + B 

   ENDDO 

 ENDDO 

•  Dependence from S1 to itself with d(i, j) = (1,0) 
•  Key observation: Since dependence is at level 1, we can 

vectorize the inner loop! 
•  Can be converted to:  

 DO I = 1, N 

S1    A(I+1,1:M) = A(I,1:M) + B 

 ENDDO 

•  The simple algorithm does not capitalize on such 
opportunities 
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Advanced Vectorization Algorithm!
procedure codegen(R, k, D); 
// R is the region for which we must generate code. 
// k is the minimum nesting level of possible parallel loops.   
// D is the dependence graph among statements in R..  
find the set {S1, S2, ... , Sm} of maximal strongly-connected 

regions in the dependence graph D restricted to R;  
construct Rp from R by reducing each Si to a single node and 

compute Dp, the dependence graph naturally induced on Rp by D; 
let {p1, p2, ... , pm} be the m nodes of Rp numbered in an order 

consistent with Dp (use topological sort to do the numbering); 
for i = 1 to m do begin 

 if pi is cyclic then begin 
generate a level-k DO statement; 
let Di be the dependence graph consisting of all dependence edges in D that are at level 

k+1 or greater and are internal to pi; 
codegen (pi, k+1, Di); 
generate the level-k ENDDO statement; 

 end 
 else 

generate a vector statement for pi in r(pi)-k+1 dimensions, where r (pi) is the number of loops containing pi; 
end 

11 



12 

Advanced Vectorization Algorithm!
DO I = 1, 100 

S1  X(I) = Y(I) + 10 

 DO J = 1, 100 

S2     B(J) = A(J,N) 

   DO K = 1, 100 

S3       A(J+1,K)=B(J)+C(J,K) 

   ENDDO 

S4     Y(I+J) = A(J+1, N) 

 ENDDO 

ENDDO 
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Advanced Vectorization Algorithm!
DO I = 1, 100 

S1   X(I) = Y(I) + 10 

 DO J = 1, 100 

S2      B(J) = A(J,N) 

   DO K = 1, 100 

S3        A(J+1,K)=B(J)+C(J,K) 

   ENDDO 

S4      Y(I+J) = A(J+1, N) 

 ENDDO 

ENDDO 

Simple dependence testing procedure:  
True dependence from S4 to S1   
I0 + J = I0 + ΔI 
⇒ ΔI = J 
As J is always positive 
 ⇒ Direction is “<”    
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Advanced Vectorization Algorithm!
DO I = 1, 100 

S1   X(I) = Y(I) + 10 

 DO J = 1, 100 

S2      B(J) = A(J,N) 

   DO K = 1, 100 

S3        A(J+1,K)=B(J)+C(J,K) 

   ENDDO 

S4      Y(I+J) = A(J+1, N) 

 ENDDO 

ENDDO 

S2 and S3: dependence via B(J) 
I does not occur in either subscript (D.V = *) 
We get: 
J0  = J0 + ΔJ 
⇒ ΔJ = 0 
⇒  Direction vectors = (*, =) 
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Advanced Vectorization Algorithm!

DO I = 1, 100 
S1   X(I) = Y(I) + 10 
 DO J = 1, 100 
S2      B(J) = A(J,N) 

   DO K = 1, 100 
S3        A(J+1,K)=B(J)+C(J,K) 

   ENDDO 
S4      Y(I+J) = A(J+1, N) 
 ENDDO 
ENDDO 

DO I = 1, 100 
   codegen({S2, S3, S4}, 2}) 
ENDDO 
X(1:100) = Y(1:100) + 10 

•   codegen called at the outermost level 

•   S1 will be vectorized, and moved 
later due to topological sort 
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Advanced Vectorization Algorithm!

DO I = 1, 100 
  DO J = 1, 100 
     codegen({S2, S3}, 3}) 

  ENDDO 
S4  Y(I+1:I+100) = A(2:101,N) 
ENDDO 
 
X(1:100) = Y(1:100) + 10 

•   codegen ({S2, S3, S4}, 2}) 

•   level-1 dependences are stripped 
off 
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Advanced Vectorization Algorithm!

•   codegen ({S2, S3}, 3}) 

•   level-2 dependences are stripped 
off 

DO I = 1, 100 
S1   X(I) = Y(I) + 10 
 DO J = 1, 100 
S2      B(J) = A(J,N) 

   DO K = 1, 100 
S3        A(J+1,K)=B(J)
+C(J,K) 

   ENDDO 
S4      Y(I+J) = A(J+1, N) 
 ENDDO 
ENDDO 

DO I = 1, 100 
  DO J = 1, 100 
    B(J) = A(J,N) 
    A(J+1,1:100)=B(J)+C(J,1:100) 
  ENDDO 

  Y(I+1:I+100) = A(2:101,N) 

ENDDO 

 

X(1:100) = Y(1:100) + 10 
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Enhancing Fine-Grained Parallelism!

Chapter 5 of Allen and Kennedy 
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Fine-Grained Parallelism!
 
 

Techniques to enhance fine-grained parallelism: 
•  Loop Interchange 

•  Scalar Expansion  

•  Scalar Renaming 
•  Array Renaming 
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Loop Shifting (Permutation)!
•  Motivation: Identify loops which can be moved and interchange them to 
“optimal” nesting levels 

•  Theorem 5.3 In a perfect loop nest, if loops at level i, i+1,...,i+n  
carry no dependence, it is always legal to shift these loops inside of 
loop i+n+1. Furthermore, these loops will not carry any dependences 
in their new position. 
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Loop Shifting!
 DO I = 1, N 
   DO J = 1, N 

      DO K = 1, N 

S         A(I,J) = A(I,J) + B(I,K)*C(K,J) 

       ENDDO 

   ENDDO 

 ENDDO 

•  S has true, anti and output dependences on itself, hence 
codegen will fail as recurrence exists at innermost level 

•  Use loop shifting to shift loops I and J inside loop K: 
 DO K = 1, N 

    DO I = 1, N 

      DO J = 1, N 

S        A(I,J) = A(I,J) + B(I,K)*C(K,J) 

      ENDDO 

    ENDDO 

 ENDDO 

 I  J K 
(=, =, <) 



22 

Loop Shifting!
 DO K= 1, N 

    DO I = 1, N 

      DO J = 1, N 

S        A(I,J) = A(I,J) + B(I,K)*C(K,J) 

      ENDDO 

    ENDDO 

 ENDDO 

codegen vectorizes to: 

 DO K = 1, N 
  

     A(1:N,1:N) = A(1:N,1:N) + SPREAD(B(1:N,K),2)*SPREAD(C(K,1:N),1) 

 

 ENDDO 

 K  I J 
(<, =, =) 
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Loop Selection!
•  Loop Shifting doesn’t always find the best loop to move.  Consider: 

    DO I = 1, N 
      DO J = 1, M 

S        A(I+1,J+1) = A(I,J) + A(I+1,J) 

      ENDDO 

  ENDDO 

•  Direction matrix:    <   <  
             =   <  

•  Loop shifting algorithm will fail to uncover vector loops; however, 
interchanging the loops can lead to: 

   DO J = 1, M 

       A(2:N+1,J+1) = A(1:N,J) + A(2:N+1,J) 

   ENDDO 

•  Need a more general algorithm 

<   <  

<   = 
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Loop Selection!
•  Loop selection: 

— Select a loop at nesting level p ≥ k that can be safely moved 
outward to level k and shift the loops at level k, k+1, …, p-1 inside 
it 

K              P P   K 

… … … … 
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Fully Permutable Loop Nest!
•  A contiguous set of k ≥ 1 loops, ij,…,ij+k-1 is fully permutable if 

all permutations of ij,…,ij+k-1are legal 

•  Data dependence test: Loops ij,…,ij+k-1 are fully permutable if 
for each dependence vector (d1,…,dn) carried at levels j … j
+k-1, each of dj,…,dj+k-1 is non-negative 

•  Fundamental result (to be discussed later in course): a set of k 
fully permutable loops can be transformed using only 
Interchange, Reversal and Skewing transformations into an 
equivalent set of k loops where k-1 of the loops are parallel 
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Scalar Expansion and its use in Removing Anti and 
Output Dependences!

     DO I = 1, N 
S1     T = A(I) 

S2     A(I) = B(I) 

S3     B(I) = T 

    ENDDO 

•  Scalar Expansion: 
    DO I = 1, N 

S1     T$(I) = A(I) 

S2     A(I) = B(I) 

S3     B(I) = T$(I) 

    ENDDO 

    T = T$(N) 

•  leads to: 
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S1      T$(1:N) = A(1:N) 

S2      A(1:N) = B(1:N) 

S3      B(1:N) = T$(1:N) 

        T = T$(N) 
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Scalar Expansion!
•  However, not useful in removing true dependences. Consider: 
    DO I = 1, N 
      T = T + A(I) + A(I+1) 

      A(I) = T 

  ENDDO 

•  Scalar expansion gives us: 
   T$(0) = T 

   DO I = 1, N 

S1      T$(I) = T$(I-1) + A(I) + A(I+1) 

S2      A(I) = T$(I) 

   ENDDO 

   T = T$(N) 
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Scalar Expansion: Safety!
•  Scalar expansion is always safe 
•  When is it useful?  

— Brute force approach: Expand all scalars, vectorize, shrink all 
unnecessary expansions. 

— However, we want to predict when expansion is useful i.e., when 
scalar expansion can enable a dependence edge to be deleted 

•  Dependences due to reuse of memory location vs. reuse of 
values 
— Dependences due to reuse of values must be preserved (true 

dependences) 
— Dependences due to reuse of memory location can be deleted by 

expansion (anti & output dependences) 
–  This is also why functional languages are easier to parallelize, 

at the cost of increased memory overhead 

28 



29 

Scalar Expansion: Covering Definitions!
•   A definition D of a scalar S is a covering definition for loop L 

if a definition of S placed at the beginning of L reaches no 
uses of S that occur past D.  

   DO I = 1, 100 

S1     T = X(I) 

S2     Y(I) = T 

   ENDDO 

   

   DO I = 1, 100 

      IF (A(I) .GT. 0) THEN 

S1        T = X(I) 

S2        Y(I) = T 

      ENDIF 

   ENDDO 

covering 

covering 
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Scalar Expansion: Covering Definitions!
•  A covering definition does not always exist: 
 
    DO I = 1, 100 

       IF (A(I) .GT. 0) THEN 

S1           T = X(I) 

       ENDIF 

S2     Y(I) = T 

    ENDDO 
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Scalar Expansion: Covering Definitions!
•  We will consider a collection of covering definitions 
    DO I = 1, 100     

      IF (X(I) .GT. 0) THEN 

S1           T = X(I) 

        ELSE 

S2      T = -X(I) 

        ENDIF 

S3      Y(I) = T 

    ENDDO 

SSA-based definition 

•  There is a collection C of covering definitions for T in a loop if either: 
— There exists no φ-function at the beginning of the loop that merges versions 

of T from outside the loop with versions defined in the loop, or, 
— The φ-function within the loop has no SSA edge to any φ-function including 

itself 
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Scalar Expansion: Covering Definitions!
•  Remember the loop which had no covering definition: 
    DO I = 1, 100     

      IF (A(I) .GT. 0) THEN 

S1           T = X(I) 

        ENDIF 

S2      Y(I) = T 

    ENDDO 

•  To form a collection of covering definitions, we can insert dummy 
assignments: 

    DO I = 1, 100 

       IF (A(I) .GT. 0) THEN 

S1           T = X(I) 

       ELSE 

S2           T = T 

       ENDIF 

S3     Y(I) = T 

    ENDDO 
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Scalar Expansion: SSA-based Algorithm!
Given the collection of covering definitions, we can 

carry out scalar expansion for a normalized loop: 
•  Create an array T$ of appropriate length 
•  For each S in the covering definition collection C, replace the T 

on the left-hand side by T$(I). 
•  For every other definition of T and every use of T in the loop 

body reachable by SSA edges that do not pass through S0, the 
φ-function at the beginning of the loop, replace T by T$(I). 

•  For every use prior to a covering definition (direct successors 
of S0 in the SSA graph), replace T by T$(I-1). 

•  If S0 is not null, then insert T$(0) = T before the loop. 
•  If there is an SSA edge from any definition in the loop to a 

use outside the loop, insert T = T$(U) after the loop, were U 
is the loop upper bound. 
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Scalar Expansion: Covering Definitions!

    DO I = 1, 100     

      IF (A(I) .GT. 0) THEN 

S1           T = X(I) 

        ENDIF 

S2      Y(I) = T 

    ENDDO 

DO I = 1, 100 
       IF (A(I) .GT. 0) THEN 
S1           T = X(I) 
       ELSE 
S2           T = T 
       ENDIF 
S3     Y(I) = T 
    ENDDO 

T$(0) = T 
DO I = 1, 100 
      IF (A(I) .GT. 0) THEN 
S1          T$(I) = X(I) 
      ELSE 
S2                T$(I) = T$(I-1) 
      ENDIF 
S3    Y(I) = T$(I) 
ENDDO 

After inserting covering definitions: 

After scalar expansion: 
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Deletable Dependences!
•  Uses of T before covering definitions are expanded as  

T$(I - 1) 

•  All other uses are expanded as T$(I) 
•  The deletable dependences are: 

— Backward carried antidependences 
— Backward carried output dependences 
— Forward carried output dependences 
— Loop-independent antidependences into the covering definition 
— Loop-carried true dependences from a covering definition to a use 

after the covering definition 
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Scalar Expansion: Drawbacks!
•  Expansion increases memory requirements 
•  Solutions: 

— Expand in a single loop 
— Strip mine loop before expansion 
— Forward substitution: 

 DO I = 1, N 
    T = A(I) + A(I+1) 

    A(I) = T + B(I) 

 ENDDO 

 

 DO I = 1, N 

    A(I) = A(I) + A(I+1) + B(I) 

 ENDDO 
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Scalar Renaming!
   DO I = 1, 100 
S1    T = A(I) + B(I) 

S2    C(I) = T + T 

S3    T = D(I) - B(I) 

S4    A(I+1) = T * T 

  ENDDO 

•  Renaming scalar T: 
DO I = 1, 100 

S1    T1 = A(I) + B(I) 

S2    C(I) = T1 + T1 

S3    T2 = D(I) - B(I) 

S4    A(I+1) = T2 * T2 

  ENDDO 
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Scalar Renaming!
•  will lead to: 
S3      T2$(1:100) = D(1:100) - B(1:100) 

S4      A(2:101) = T2$(1:100) * T2$(1:100) 

S1      T1$(1:100) = A(1:100) + B(1:100) 

S2      C(1:100) = T1$(1:100) + T1$(1:100) 

        T = T2$(100) 
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Scalar Renaming!
•  Renaming algorithm partitions all definitions and uses into equivalent 

classes, each of which can occupy different memory locations. 

•  Use the definition-use graph to: 
— Pick definition 
— Add all uses that the definition reaches to the equivalence class 
— Add all definitions that reach any of the uses… 
— ..until fixed point is reached 

•  Example: 
     IF (…) THEN   

 S1    T = … 

     ELSE 

 S2    T = … 

     ENDIF 

 S3  … = T 

 S4    T = … 

 S5  … = T 

 IF (…) THEN 
      T1 = … 

 ELSE 

      T1 = … 

 ENDIF 
 … = T1 

 T2 = … 

 … = T2 
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Scalar Renaming: Profitability!
•  Scalar renaming will break recurrences in which a loop-

independent output dependence or anti-dependence is a critical 
element of a cycle 

•  Relatively cheap to use scalar renaming 

•  Usually done by compilers when calculating live ranges for 
register allocation 
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Array Renaming!
 
  DO I = 1, N 

S1      A(I) = A(I-1) + X 

S2      Y(I) = A(I) + Z 

S3      A(I) = B(I) + C 

  ENDDO 

•  S1 δ∞ S2           S2 δ∞-1 S3            S3 δ1 S1           S1 δ∞0 S3 

•  Rename A(I) to A’(I):  
   DO I = 1, N 

S1      A’(I) = A(I-1) + X 

S2      Y(I) = A’(I) + Z 

S3      A(I) = B(I) + C 

   ENDDO  

•  Dependences remaining:   S1 δ∞ S2    and      S3 δ1 S1 
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Array Renaming: Profitability!
•  Examining dependence graph and determining minimum set of 

critical edges to break a recurrence is NP-complete! 

•  Solution: determine edges that are removed by array renaming 
and analyze effects on dependence graph 

•  procedure array_partition: 
— Assumes no control flow in loop body 
— Identifies collections of references to arrays which refer to the 

same value  
— Identifies deletable output dependences and antidependences 

•  Use this procedure to generate code 
— Minimize amount of copying back to the “original” array at the 

beginning and the end 
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Homework #3 (Written Assignment)!
1. Solve exercise 3.6 in book 

— This is case 4 of Lemma 3.3 
— Read Definitions 3.1, 3.2, 3.3 and Lemmas 3.1, 3.2, 3.3 before starting 

•  Due in class on Tuesday, Oct 8th   

•  Honor Code Policy: All submitted homeworks are expected to be the 
result of your individual effort. You are free to discuss course 
material and approaches to problems with your other classmates, 
the teaching assistants and the professor, but you should never 
misrepresent someone else’s work as your own. If you use any 
material from external sources, you must provide proper 
attribution.  


