
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 12: Barrier Synchronization

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 12 9 February 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Announcements!
•  Homework 4 assigned today, due by 5pm on Wednesday, Feb

16th

— We will try and return graded homeworks by Feb 23rd

•  Midterm will be a 2-hour take-home written exam
— Closed-book, closed-notes, closed-computer
— Will be given out at lecture on Wed, Feb 23rd
— Must be handed in by 5pm on Friday, Feb 25th

•  No lecture on Feb 25th since midterm is due that day

COMP 322, Spring 2011 (V.Sarkar)	

3

Acknowledgments for Todayʼs Lecture!
•  “Principles of Parallel Programming”, Calvin Lin & Lawrence

Snyder, Addison-Wesley, 2009
— Includes resources available at http://www.pearsonhighered.com/

educator/academic/product/0,3110,0321487907,00.html

•  Lecture 12 handout

COMP 322, Spring 2011 (V.Sarkar)	

4

Hello-Goodbye Forall Example!
rank.count = 0; // rank object contains an int field, count!

forall (point [i] : [0:m-1]) {!

 int r;!

 isolated {r = rank.count++;}!

 System.out.println(“Hello from task ranked “ + r);!

 System.out.println(“Goodbye from task ranked “ + r);!

}!

•  Sample output for m = 4
Hello from task ranked 0
Hello from task ranked 1
Goodbye from task ranked 0
Hello from task ranked 2
Goodbye from task ranked 2
Goodbye from task ranked 1
Hello from task ranked 3
Goodbye from task ranked 3

COMP 322, Spring 2011 (V.Sarkar)	

5

Hello-Goodbye Forall Example (contd)!
rank.count = 0; // rank object contains an int field, count!

forall (point [i] : [0:m-1]) {!

 int r;!

 isolated {r = rank.count++;}!

 System.out.println(“Hello from task ranked “ + r);!

 System.out.println(“Goodbye from task ranked “ + r);!

}!

•  Question: how can we transform this code so as to ensure that
all tasks say hello before any tasks goodbye?

•  Approach 1: Replace the forall loop by two forall loops, one for
the hello’s and one for the goodbye’s
— Need to communicate local r values from one forall to the next

•  Approach 2: insert a “barrier” between the hello’s and
goodbye’s
— “next” statement in HJ

COMP 322, Spring 2011 (V.Sarkar)	

6

Barrier Synchronization: HJʼs “next” statement!

rank.count = 0; // rank object contains an int field, count!

forall (point [i] : [0:m-1]) {!

 int r;!

 isolated {r = rank.count++;}!

 System.out.println(“Hello from task ranked “ + r);!

 next; // Acts as barrier between phases 0 and 1!

 System.out.println(“Goodbye from task ranked “ + r);!

}!

•  next  each forall iteration suspends at next until all iterations arrive
(complete previous phase), after which the phase can be advanced
— If a forall iteration terminates before executing “next”, then the other

iterations do not wait for it
— Scope of synchronization is the closest enclosing forall statement
— Special case of “phaser” construct (will be covered in following lectures)

Phase 0

Phase 1

COMP 322, Spring 2011 (V.Sarkar)	

7

Impact of barrier on scheduling forall
iterations!

 Modeling a next
operation in the
computation graph

Forall
iterations

Phase 0 Phase 1

i=0
i=1
i=2
i=3

SIG

SIG

SIG

WAIT

SIG
WAIT

WAIT

WAIT

next
signal edges

wait edges

COMP 322, Spring 2011 (V.Sarkar)	

8

One-Dimensional Iterative Averaging Example!

•  Initialize a one-dimensional array of (n+2) double’s with boundary
conditions, myVal[0] = 0 and myVal[n+1] = 1.

•  In each iteration, each interior element myVal[i] in 1..n is replaced by
the average of its left and right neighbors.
— Two separate arrays are used in each iteration, one for old values and the

other for the new values

•  After a sufficient number of iterations, we expect each element of
the array to converge to myVal[i] = i/(n+1)
— In this case, myVal[i] = (myVal[i-1]+myVal[i+1])/2, for all i in 1..n

Illustration of an intermediate step for n = 8 (source: Figure 6.19 in Lin-Snyder book)

COMP 322, Spring 2011 (V.Sarkar)	

9

HJ code for One-Dimensional Iterative Averaging
using nested for-forall structure (Listing 3)!

1.  double[] myVal = new double[n]; myVal[0] = 0; myVal[n+1] = 1;
2.  double[] myNew = new double[n]; double[] temp = null;
3.  int batchSize = CeilDiv(n,t); // Number of elements per task
4.  for (point [iter] : [0:iterations-1]) {
5.  forall (point [i] : [0:t-1]) { // Create t tasks
6.  int start = i*batchSize + 1;
7.  for (point[j] : [start:Math.min(start+batchSize-1,n)])
8.  myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
9.  } // forall
10.  temp = myNew; myNew = myVal; myVal = temp; // swap(myNew, myVal)
11. } // for

How many tasks does this version create?

COMP 322, Spring 2011 (V.Sarkar)	

10

HJ code for One-Dimensional Iterative Averaging
using nested forall-for-next structure (Listing 4)!

1.  double[] val1 = new double[n]; val[0] = 0; val[n+1] = 1;
2.  double[] val2 = new double[n];
3.  int batchSize = CeilDiv(n,t); // Number of elements per task
4.  forall (point [i] : [0:t-1]) { // Create t tasks
5.  double[] myVal = val1; double myNew = val2; double[] temp = null;
6.  int start = i*batchSize + 1; int end = Math.min(start+batchSize-1,n);
7.  for (point [iter] : [0:iterations-1]) {
8.  for (point[j] : [start:end])
9.  myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
10.  next; // barrier
11.  temp = myNew; myNew = myVal; myVal = temp; // swap(myNew,

myVal)
12.  } // for
13. } // forall

COMP 322, Spring 2011 (V.Sarkar)	

11

Extension: adding a print statement between phases
with Two Barriers (Listing 5)!

forall (point [i] : [0:t-1]) { // Create t tasks
 . . .
 for (point [iter] : [0:iterations-1]) {
 double sum = 0;
 for (point[j] : [start:end]) {
 myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
 sum += Math.abs(myNew[j] - myVal[i]); }
 tSum[i] = sum;
 next; // first barrier
 if (i == 0) {
 double sum = 0; for(point[k]:[0:t-1]) sum += tSum[k];
 System.out.println("Sum = " + sum + " for iteration " + iter);
 }
 next; // second barrier
 . . .
} // forall

COMP 322, Spring 2011 (V.Sarkar)	

12

next-end

signal edges

wait edges

next-start

single-statement

Next-with-Single Statement!

 next <single-stmt> is
a barrier in which
single-stmt is
performed exactly
once after all tasks
have completed the
previous phase and
before any task
begins its next phase.

 Modeling next-with-single
in the Computation Graph

COMP 322, Spring 2011 (V.Sarkar)	

13

Use of next-with-single to add a print statement
between phases (Listing 6)!

forall (point [i] : [0:t-1]) { // Create t tasks
 . . .
 for (point [iter] : [0:iterations-1]) {
 double sum = 0;
 for (point [j] : [start:end]) {
 myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;
 sum += Math.abs(myNew[j] - myVal[i]);
 }
 tSum[i] = sum;
 next { // next-with-single statement replaces two barriers
 double sum = 0; for(point[k]:[0:t-1]) sum += tSum[k];
 System.out.println("Sum = " + sum + " for iteration " + iter);
 }
 . . .
} // forall

