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Acknowledgments for Todayʼs Lecture"
•  Handout for Lecture 33 
•  David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel 

Processors: A Hands-on Approach. Morgan Kaufmann Publishers Inc., 
San Francisco, CA, USA, 1st edition, 2010. 
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Announcements"
•  Homework 7 due by 5pm on Friday, April 22nd 

— Send email to comp322-staff if you’re running into issues with 
accessing SUG@R nodes, or anything else 
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•  Two major trends 
1.  Increasing performance gap relative to mainstream CPUs 

–  Calculation: 367 GFLOPS vs. 32 GFLOPS 
–  Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s 

2.  Availability of more general (non-graphics) programming interfaces 

—  GPU in every PC and workstation – massive volume and potential impact 

Why GPUs?"
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What is GPGPU ?"
•  General Purpose computation using GPU 

in applications other than 3D graphics 
— GPU accelerates critical path of application 

•  Data parallel algorithms leverage GPU attributes 
— Large data arrays, streaming throughput 
— Fine-grain SIMD parallelism 
— Low-latency floating point (FP) computation 

•  Applications – see GPGPU.org 
— Game effects (FX) physics, image processing 
— Physical modeling, computational engineering, matrix algebra, 

convolution, correlation, sorting 
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Traditional vs. General Purpose GPUs"
•  Traditional graphics pipeline (Figure 10.3, Lin & Snyder) 

•  General-purpose GPU (Figure 10.4(b), Lin & Snyder) 
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CPUs and GPUs have fundamentally 
different design philosophies (Figure 1)"
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Some applications that are well-
suited for GPU execution "

Application Description Source Kernel % time  
H.264 SPEC ‘06 version, change in guess vector 34,811 194 35% 

LBM SPEC ‘06 version, change to single precision 
and print fewer reports 1,481 285 >99% 

RC5-72 Distributed.net RC5-72 challenge client code 1,979 218 >99% 

FEM Finite element modeling, simulation of 3D 
graded materials 1,874 146 99% 

RPES Rye Polynomial Equation Solver, quantum 
chem, 2-electron repulsion 1,104 281 99% 

PNS Petri Net simulation of a distributed system 322 160 >99% 

SAXPY Single-precision implementation of saxpy, 
used in Linpack’s Gaussian elim. routine 952 31 >99% 

TRACF Two Point Angular Correlation Function 536 98 96% 
FDTD Finite-Difference Time Domain analysis of 

2D electromagnetic wave propagation 1,365 93 16% 

MRI-Q Computing a matrix Q, a scanner’s 
configuration in MRI reconstruction 490 33 >99% 



COMP 322, Spring 2011 (V.Sarkar)	

9 

Speedup of these applications  
relative to a single CPU core"

• GeForce 8800 GTX vs. 2.2GHz Opteron 248  
• 10× speedup in a kernel is typical, as long as the kernel can 
occupy enough parallel threads 

• 25× to 400× speedup if the function’s data requirements 
and control flow suit the GPU and the application is 
optimized 
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Process Flow of a CUDA Kernel Call 
(Figure 2)"

•  Data parallel programming architecture from 
NVIDIA 
— Execute programmer-defined kernels on 

extremely parallel GPUs 
— CUDA program flow:  

1.  Push data on device 
2.  Launch kernel 
3.  Execute kernel and memory accesses in 

parallel 
4.  Pull data off device 

•  Device threads are launched in batches 
— Blocks of Threads, Grid of Blocks 

•  Explicit device memory management  
— cudaMalloc, cudaMemcpy, cudaFree, etc. 

10 

Figure source: Y. Yan et. al “JCUDA: a 
Programmer Friendly Interface for 
Accelerating Java Programs with CUDA.” 
Euro-Par 2009. 
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What Programmer Expresses in CUDA "

•  Computation partitioning (where does computation occur?) 
— Declarations on functions __host__, __global__, __device__ 
— Mapping of thread programs to device: compute <<<gs, bs>>>(<args>) 

•  Data partitioning (where does data reside, who may access it and 
how?) 
•  Declarations on data __shared__, __device__, __constant__, … 

•  Data management and orchestration 
•  Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost) 

•  Concurrency management 
— E.g. __synchthreads() 
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Execution of a CUDA program (Figure 3)"
•  Integrated host+device application 

—  Serial or modestly parallel parts on CPU host 
—  Highly parallel kernels on GPU device 

Host Code  
(small number of threads)‏ 

. . . 

. . . 

Device Kernel 
(large number of threads) 

Host Code  
(small number of threads)‏ 

Device Kernel 
(large number of threads) 

Host Code  
(small number of threads)‏ 
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Logical Structure of a CUDA kernel 
invocation (Listing 1)"
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Organization of a CUDA grid 
(Figure 4)"

async at(GPU) 

async at(GPU) 

forall(blockIdx) 

forall(threadIdx) 
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Sequential CPU version of matrix 
multiply written in C (Figure 5)"



COMP 322, Spring 2011 (V.Sarkar)	

16 

M0,2 

M1,1 

M0,1 M0,0 

M1,0 

M0,3 

M1,2 M1,3 

Using a 1-D array to store a 2-D matrix  
(Row major layout)"

M0,2 M0,1 M0,0 M0,3 M1,1 M1,0 M1,2 M1,3 M2,1 M2,0 M2,2 M2,3 

M2,1 M2,0 M2,2 M2,3 

M3,1 M3,0 M3,2 M3,3 

M3,1 M3,0 M3,2 M3,3 

M 

Assume square matrix for simplicity 
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Matrix multiplication kernel code in 
CUDA (Figure 6)"
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Launching the Kernel"
•  Four steps in CUDA execution 

1. Push data on device 
–  Use cudaMalloc() and cudaMemCpy() 

•  Will be discussed in next lecture 
2. Launch kernel (Figure 7) 

–  Two-level forall loops implied by <<<…>>> parameters 

3. Execute kernel (Figure 6) 
4. Pull data off device 

–  Use cudaMemCpy() 


