
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 33: GPGPU Programming with
CUDA

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 33 11 April 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  Handout for Lecture 33
•  David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel

Processors: A Hands-on Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1st edition, 2010.

COMP 322, Spring 2011 (V.Sarkar)	

3

Announcements"
•  Homework 7 due by 5pm on Friday, April 22nd

— Send email to comp322-staff if you’re running into issues with
accessing SUG@R nodes, or anything else

COMP 322, Spring 2011 (V.Sarkar)	

4

•  Two major trends
1.  Increasing performance gap relative to mainstream CPUs

–  Calculation: 367 GFLOPS vs. 32 GFLOPS
–  Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s

2.  Availability of more general (non-graphics) programming interfaces

—  GPU in every PC and workstation – massive volume and potential impact

Why GPUs?"

COMP 322, Spring 2011 (V.Sarkar)	

5

What is GPGPU ?"
•  General Purpose computation using GPU

in applications other than 3D graphics
— GPU accelerates critical path of application

•  Data parallel algorithms leverage GPU attributes
— Large data arrays, streaming throughput
— Fine-grain SIMD parallelism
— Low-latency floating point (FP) computation

•  Applications – see GPGPU.org
— Game effects (FX) physics, image processing
— Physical modeling, computational engineering, matrix algebra,

convolution, correlation, sorting

COMP 322, Spring 2011 (V.Sarkar)	

6

Traditional vs. General Purpose GPUs"
•  Traditional graphics pipeline (Figure 10.3, Lin & Snyder)

•  General-purpose GPU (Figure 10.4(b), Lin & Snyder)

COMP 322, Spring 2011 (V.Sarkar)	

7

CPUs and GPUs have fundamentally
different design philosophies (Figure 1)"

DRAM

Co
Ca A A A A A A A A A A A A A A A A

Streaming Multiprocessor

Cache

ALU
Control

ALU

ALU

ALU

DRAM

Single CPU core Multiple GPU processors

COMP 322, Spring 2011 (V.Sarkar)	

8

Some applications that are well-
suited for GPU execution "

Application Description Source Kernel % time
H.264 SPEC ‘06 version, change in guess vector 34,811 194 35%

LBM SPEC ‘06 version, change to single precision
and print fewer reports 1,481 285 >99%

RC5-72 Distributed.net RC5-72 challenge client code 1,979 218 >99%

FEM Finite element modeling, simulation of 3D
graded materials 1,874 146 99%

RPES Rye Polynomial Equation Solver, quantum
chem, 2-electron repulsion 1,104 281 99%

PNS Petri Net simulation of a distributed system 322 160 >99%

SAXPY Single-precision implementation of saxpy,
used in Linpack’s Gaussian elim. routine 952 31 >99%

TRACF Two Point Angular Correlation Function 536 98 96%
FDTD Finite-Difference Time Domain analysis of

2D electromagnetic wave propagation 1,365 93 16%

MRI-Q Computing a matrix Q, a scanner’s
configuration in MRI reconstruction 490 33 >99%

COMP 322, Spring 2011 (V.Sarkar)	

9

Speedup of these applications  
relative to a single CPU core"

• GeForce 8800 GTX vs. 2.2GHz Opteron 248
• 10× speedup in a kernel is typical, as long as the kernel can
occupy enough parallel threads

• 25× to 400× speedup if the function’s data requirements
and control flow suit the GPU and the application is
optimized

COMP 322, Spring 2011 (V.Sarkar)	

10

Process Flow of a CUDA Kernel Call
(Figure 2)"

•  Data parallel programming architecture from
NVIDIA
— Execute programmer-defined kernels on

extremely parallel GPUs
— CUDA program flow:

1.  Push data on device
2.  Launch kernel
3.  Execute kernel and memory accesses in

parallel
4.  Pull data off device

•  Device threads are launched in batches
— Blocks of Threads, Grid of Blocks

•  Explicit device memory management
— cudaMalloc, cudaMemcpy, cudaFree, etc.

10

Figure source: Y. Yan et. al “JCUDA: a
Programmer Friendly Interface for
Accelerating Java Programs with CUDA.”
Euro-Par 2009.

COMP 322, Spring 2011 (V.Sarkar)	

11

What Programmer Expresses in CUDA "

•  Computation partitioning (where does computation occur?)
— Declarations on functions __host__, __global__, __device__
— Mapping of thread programs to device: compute <<<gs, bs>>>(<args>)

•  Data partitioning (where does data reside, who may access it and
how?)
•  Declarations on data __shared__, __device__, __constant__, …

•  Data management and orchestration
•  Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost)

•  Concurrency management
— E.g. __synchthreads()

P

M

P

H
O

ST
 (

C
PU

)

M D
EV

IC
E

(G
PU

)

Interconnect between devices and memories

COMP 322, Spring 2011 (V.Sarkar)	

12

Execution of a CUDA program (Figure 3)"
•  Integrated host+device application

—  Serial or modestly parallel parts on CPU host
—  Highly parallel kernels on GPU device

Host Code
(small number of threads)‏

. . .

. . .

Device Kernel
(large number of threads)

Host Code
(small number of threads)‏

Device Kernel
(large number of threads)

Host Code
(small number of threads)‏

COMP 322, Spring 2011 (V.Sarkar)	

13

Logical Structure of a CUDA kernel
invocation (Listing 1)"

COMP 322, Spring 2011 (V.Sarkar)	

14

Organization of a CUDA grid 
(Figure 4)"

async at(GPU)

async at(GPU)

forall(blockIdx)

forall(threadIdx)

COMP 322, Spring 2011 (V.Sarkar)	

15

Sequential CPU version of matrix
multiply written in C (Figure 5)"

COMP 322, Spring 2011 (V.Sarkar)	

16

M0,2

M1,1

M0,1 M0,0

M1,0

M0,3

M1,2 M1,3

Using a 1-D array to store a 2-D matrix  
(Row major layout)"

M0,2 M0,1 M0,0 M0,3 M1,1 M1,0 M1,2 M1,3 M2,1 M2,0 M2,2 M2,3

M2,1 M2,0 M2,2 M2,3

M3,1 M3,0 M3,2 M3,3

M3,1 M3,0 M3,2 M3,3

M

Assume square matrix for simplicity

COMP 322, Spring 2011 (V.Sarkar)	

17

Matrix multiplication kernel code in
CUDA (Figure 6)"

COMP 322, Spring 2011 (V.Sarkar)	

18

Launching the Kernel"
•  Four steps in CUDA execution

1. Push data on device
–  Use cudaMalloc() and cudaMemCpy()

•  Will be discussed in next lecture
2. Launch kernel (Figure 7)

–  Two-level forall loops implied by <<<…>>> parameters

3. Execute kernel (Figure 6)
4. Pull data off device

–  Use cudaMemCpy()

