
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 36: Introduction to MPI

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 36 18 April 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Acknowledgments for Todayʼs Lecture"
•  “Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder

— Includes resources available at
http://www.pearsonhighered.com/educator/academic/product/
0,3110,0321487907,00.html

•  “Parallel Architectures”, Calvin Lin
— Lectures 5 & 6, CS380P, Spring 2009, UT Austin

— http://www.cs.utexas.edu/users/lin/cs380p/schedule.html

•  Slides accompanying Chapter 6 of “Introduction to Parallel Computing”,
2nd Edition, Ananth Grama, Anshul Gupta, George Karypis, and Vipin
Kumar, Addison-Wesley, 2003
—  http://www-users.cs.umn.edu/~karypis/parbook/Lectures/AG/chap6_slides.pdf

•  MPI slides from “High Performance Computing: Models, Methods and
Means”, Thomas Sterling, CSC 7600, Spring 2009, LSU
—  http://www.cct.lsu.edu/csc7600/coursemat/index.html

•  mpiJava home page: http://www.hpjava.org/mpiJava.html
•  MPI lectures given at Rice HPC Summer Institute 2009, Tim

Warburton, May 2009

COMP 322, Spring 2011 (V.Sarkar)	

3

Organization of a Shared-Memory
Multicore SMP (Lecture 22)"

•  Memory hierarchy for a single Intel Xeon Quad-core
E5440 HarperTown processor chip
— A SUG@R node contains two such chips

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache
(shared by all cores)

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

COMP 322, Spring 2011 (V.Sarkar)	

4

Organization of a Distributed-Memory
Multiprocessor"

Figure (a)
•  Host node (Pc) connected to a cluster of processor nodes (P0 … Pm)
•  Processors P0 … Pm communicate via an interconnection network

— Supports much lower latencies and higher bandwidth than standard
TCP/IP networks

Figure (b)
•  Each processor node consists of a processor, memory, and a Network

Interface Card (NIC) connected to a router node (R) in the interconnect

COMP 322, Spring 2011 (V.Sarkar)	

5

Principles of  
Message-Passing Programming "

•  The logical view of a machine supporting the message-passing
paradigm consists of p processes, each with its own exclusive
address space.
1.  Each data element must belong to one of the partitions of the

space; hence, data must be explicitly partitioned and placed.
2.  All interactions (read-only or read/write) require cooperation of

two processes - the process that has the data and the process
that wants to access the data.

•  These two constraints, while onerous, make underlying costs
very explicit to the programmer.

•  In this loosely synchronous model, processes synchronize
infrequently to perform interactions. Between these
interactions, they execute completely asynchronously.

•  Most message-passing programs are written using the single
program multiple data (SPMD) model.

COMP 322, Spring 2011 (V.Sarkar)	

6

Global View vs. Local View"

COMP 322, Spring 2011 (V.Sarkar)	

7

Single Program Multiple Data model (SPMD)"

COMP 322, Spring 2011 (V.Sarkar)	

8

MPI: The Message Passing Interface"
•  RMI originated in the Java world. Efforts like JavaParty and

Manta aimed to bring RMI into the HPC world, by improving its
performance.

•  MPI is a technology from the HPC world, which various people
have worked on importing into Java.
— MPI is the HPC Message Passing Interface standardized in the early

1990s by the MPI Forum—a substantial consortium of vendors and
researchers.

— It is an API for communication between nodes of a distributed
memory parallel computer (typically, now, a workstation cluster).

— The original standard defines bindings to C and Fortran (later C++).
— The low-level parts of API are oriented to: fast transfer of data

from user program to network; supporting multiple modes of message
synchronization available on HPC platforms; etc.

— Higher level parts of the API are concerned with organization of
process groups and providing the kind of collective communications seen
in typical parallel applications.

COMP 322, Spring 2011 (V.Sarkar)	

9

Features of MPI"

•  MPI (http://www-unix.mcs.anl.gov/mpi) is an API for sending
and receiving messages. But it goes further than this.
— It is essentially a general platform for Single Program Multiple

Data (SPMD) parallel computing on distributed memory
architectures.

— In this respect it is directly comparable with the PVM (Parallel
Virtual Machine) environment that was one of its precursors.

•  It introduced the important abstraction of a communicator,
which is an object something like an N-way communication
channel, connecting all members of a group of cooperating
processes.
— This was introduced partly to support using multiple parallel

libraries without interference.

•  It also introduced a novel concept of datatypes, used to
describe the contents of communication buffers.
— Introduced partly to support “zero-copying” message transfer.

COMP 322, Spring 2011 (V.Sarkar)	

10

The Minimal Set of MPI Routines"

MPI_Init Initializes MPI.

MPI_Finalize Terminates MPI.
MPI_Comm_size Determines the number of processes.
MPI_Comm_rank Determines the label of calling process.
MPI_Send Sends a message.

MPI_Recv Receives a message.

COMP 322, Spring 2011 (V.Sarkar)	

11

Our First MPI Program  
(mpiJava version)"

import mpi.*;

class Hello {
 static public void main(String[] args) {
 MPI.Init(args) ;

 int npes = MPI.COMM_WORLD.Size()

 int myrank = MPI.COMM_WORLD.Rank() ;

 System.out.println(”My process number is ” + myrank);
 MPI.Finalize() ;
 }
}

main() is enclosed in an implicit
“forall” --- each process runs a
separate instance of main() with
“index variable” = myrank

COMP 322, Spring 2011 (V.Sarkar)	

12

Starting and Terminating the MPI Library "
•  MPI_Init is called prior to any calls to other MPI routines. Its

purpose is to initialize the MPI environment.
•  MPI_Finalize is called at the end of the computation, and it

performs various clean-up tasks to terminate the MPI
environment.

•  The prototypes of these two functions are (C version):
 int MPI_Init(int *argc, char ***argv)
 int MPI_Finalize()

•  MPI_Init also strips off any MPI related command-line
arguments.

•  All MPI routines, data-types, and constants are prefixed by
“MPI_”. The return code for successful completion is
MPI_SUCCESS.

COMP 322, Spring 2011 (V.Sarkar)	

13

MPI Communicators
•  Communicator is an internal object

— Communicator registration is like phaser registration,
except that MPI does not support dynamic parallelism

•  MPI programs are made up of communicating processes
•  Each process has its own address space containing its

own attributes such as rank, size (and argc, argv, etc.)
•  MPI provides functions to interact with it
•  Default communicator is MPI_COMM_WORLD

— All processes are its members
— It has a size (the number of processes)
— Each process has a rank within it
— Can think of it as an ordered list of processes

•  Additional communicator(s) can co-exist
•  A process can belong to more than one communicator
•  Within a communicator, each process has a unique rank

MPI_COMM_WORLD

0

12

5

3

4

6

7

13

COMP 322, Spring 2011 (V.Sarkar)	

14

Process Branching in SPMD programs"
•  In procnumber.c each process

executed the same
instructions.

•  We can use conditional
statements so that different
processes perform operations
unique to their number.

•  In procbranch.c we first find
the process number.

1.  Each process checks to see if
it is process 0. Only process 0
prints out “First”

2.  Each process checks to see if
it is process 1. Only process 1
prints out “Second”

3.  Each process checks to see if
it is process > 1. Only these
processes print out “No medal”

COMP 322, Spring 2011 (V.Sarkar)	

15

Running procbranch!
•  We compile and run as usual:

‣  mpicc -o procbranch procbranch.c
‣  mpiexec -n 7 ./procbranch

Second
First
No medal
No medal
No medal
No medal
No medal

•  Notice:
— Again the processes do not report in numerical
order

— The text string output depends on the process
number.

COMP 322, Spring 2011 (V.Sarkar)	

16

The Minimal Set of MPI Routines"

MPI_Init Initializes MPI.

MPI_Finalize Terminates MPI.
MPI_Comm_size Determines the number of processes.
MPI_Comm_rank Determines the label of calling process.
MPI_Send Sends a message.

MPI_Recv Receives a message.

•  Note:
— the processes have so far acted independently & no

information has passed between the processes.
— “embarrassingly parallel”, Cleve Moler.

COMP 322, Spring 2011 (V.Sarkar)	

17

MPI Point to Point Communication:
Basic Idea "

•  A very simple communication between two processes is:
— process zero sends ten doubles to process one

•  In MPI this is a little more complicated than you might
expect.

•  Process zero has to tell MPI:
— to send a message to process one
— that the message contains ten entries
— the entries of the message are of type double
— the message has to be tagged with a label (integer number)

•  Process one has to tell MPI:
— to receive a message from process zero
— that the message contains ten entries
— the entries of the message are of type double
— the label that process zero attached to the message

COMP 322, Spring 2011 (V.Sarkar)	

18

mpiJava Class hierarchy"

MPI

Group

Comm

Datatype

Status

Request

package mpi

Intracomm

Intercomm

Prequest

Cartcomm

Graphcomm

COMP 322, Spring 2011 (V.Sarkar)	

19

mpiJava send and receive"
•  Send and receive members of Comm:
 void Send(Object buf, int offset, int count, Datatype type,"
 int dst, int tag) ;"

 Status Recv(Object buf, int offset, int count, Datatype type,"
 int src, int tag) ;"

•  The arguments buf, offset, count, type describe the data
buffer—the storage of the data that is sent or received.
They will be discussed on the next slide.

•  dst is the rank of the destination process relative to this
communicator. Similarly in Recv(), src is the rank of the
source process.

•  An arbitrarily chosen tag value can be used in Recv() to select
between several incoming messages: the call will wait until a
message sent with a matching tag value arrives.

•  The Recv() method returns a Status value, discussed later.
•  Both Send() and Recv() are blocking operations by default

— Analogous to a phaser next operation

COMP 322, Spring 2011 (V.Sarkar)	

20

Example of Send and Recv"
import mpi.*;

class myProg {
 public static void main(String[] args) {
 int tag0 = 0;
 MPI.Init(args); // Start MPI computation
 if (MPI.COMM_WORLD.rank() == 0) { // rank 0…sender
 int loop[] = new int[1]; loop[0] = 3;
 MPI.COMM_WORLD.Send("Hello World!", 0, 12, MPI.CHAR, 1, tag0);
 MPI.COMM_WORLD.Send(loop, 0, 1, MPI.INT, 1, tag0);
 } else { // rank 1…receiver
 int loop[] = new int[1]; char msg[] = new char[12];
 MPI.COMM_WORLD.Recv(msg, 0, 12, MPI.CHAR, 0, tag0);
 MPI.COMM_WORLD.Recv(loop, 0, 1, MPI.INT, 0, tag0);
 for (int i = 0; i < loop[0]; i++) System.out.println(msg);
 }
 MPI.Finalize(); // Finish MPI computation
 }
}

Send() and Recv() calls are blocking operations by default

COMP 322, Spring 2011 (V.Sarkar)	

21

Communication Buffers"
•  Most of the communication operations take a sequence of

parameters like
 Object buf, int offset, int count, Datatype type"

•  In the actual arguments passed to these methods, buf must be
an array (or a run-time exception will occur).
— The reason for not declaring it as an array was that one would then

need to overload with about 9 versions of most methods, e.g.
 void Send(int [] buf, …)"
 void Send(long [] buf, …)"
 …"
 and about 81 versions of some odd operations that involve two

buffers, possibly of different type. Declaring Object buf allows
any kind of array in one signature.

•  offset is the element in the buf array where message starts.
count is the number of items to send. type describes the type
of these items.

COMP 322, Spring 2011 (V.Sarkar)	

22

Layout of Buffer"
•  If type is a basic datatype (corresponding to a Java type),

the message corresponds to a subset of the array buf,
defined as follows:

–  In the case of a send buffer, the red boxes represent
elements of the buf array that are actually sent.

–  In the case of a receive buffer, the red boxes represent
elements where the incoming data may be written (other
elements will be unaffected). In this case count defines
the maximum message size that can be accepted.
Shorter incoming messages are also acceptable.

… … …

COMP 322, Spring 2011 (V.Sarkar)	

23

Basic Datatypes"
•  mpiJava defines 9 basic datatypes: these correspond to the 8

primitive types in the Java language, plus a basic datatype that
stands for an Object (or, more formally, a Java reference type).

•  The basic datatypes are available as static fields of the MPI class.
They are:

Object"MPI.OBJECT"
double"MPI.DOUBLE"
float"MPI.FLOAT"
long"MPI.LONG"
int"MPI.INT"
boolean"MPI.BOOLEAN"
short"MPI.SHORT"
char"MPI.CHAR"
byte"MPI.BYTE"

Java type mpiJava datatype

COMP 322, Spring 2011 (V.Sarkar)	

24

Message Envelope
•  Communication across process is

performed using messages.
•  Each message consists of a fixed

number of fields that is used to
distinguish them, called the Message
Envelope :
— Envelope comprises source,

destination, tag, communicator
— Message comprises Envelope + data

•  Communicator refers to the
namespace associated with the
group of related processes

24

MPI_COMM_WORL
D 0

12

5

3

4

6

7

Source : process0
Destination : process1
Tag : 1234
Communicator : MPI_COMM_WORLD

COMP 322, Spring 2011 (V.Sarkar)	

25

Message Ordering in MPI"

•  FIFO ordering only
guaranteed for same source,
destination, data type, and
tag

Source Destination

Source Destination
tag = 1

tag = 2
tag = 3

COMP 322, Spring 2011 (V.Sarkar)	

26

ANY_SOURCE and ANY_TAG"

•  A recv() operation can explicitly specify which process within
the communicator group it wants to accept a message from,
through the src parameter.

•  It can also explicitly specify what message tag the message
should have been sent with, through the tag parameter.

•  The recv() operation will block until a message meeting both
these criteria arrives.
— If other messages arrive at this node in the meantime, this call

to recv() ignores them (which may or may not cause the senders
of those other messages to wait, until they are accepted).

•  If you want the recv() operation to accept a message from
any source, or with any tag, you may specify the values
MPI.ANY_SOURCE or MPI.ANY_TAG for the respective
arguments.

COMP 322, Spring 2011 (V.Sarkar)	

27

Status values"

•  The recv() method returns an instance of the Status class.
•  This object provides access to several useful pieces about

the message that arrived. Below we assume the Status
object is saved to a variable called status:
— int field status.source holds the rank of the process that sent

the message (particularly useful if the message was received
with MPI.ANY_SOURCE).

— int field status.tag holds the message tag specified by the
sender of the message (particularly useful if the message was
received with MPI.ANY_TAG).

— int method status.Get_count(type) returns number of items
received in the message.

— int method status.Get_elements(type) returns number of basic
elements received in the message.

— int field status.index is set by methods like Request.Waitany(),
described later.

COMP 322, Spring 2011 (V.Sarkar)	

28

Sending and Receiving Messages "
•  On the receiving end, the status variable can be used to get

information about the MPI_Recv operation.
•  The corresponding data structure contains:

 typedef struct MPI_Status {
 int MPI_SOURCE;
 int MPI_TAG;
 int MPI_ERROR; };

•  The MPI_Get_count function returns the precise count of data
items received.

 int MPI_Get_count(MPI_Status *status, MPI_Datatype
 datatype, int *count)

COMP 322, Spring 2011 (V.Sarkar)	

29

Communication Modes"
•  Following MPI, several communication modes are supported

through a family of send methods. They differ mostly in
their approaches to buffering and synchronization.
— Send() implements MPI’s standard mode semantics. The

message may be buffered by the system, allowing Send() to
return before a matching Recv() has been posted, but the
implementation does not guarantee this.

— Bsend() the system will attempt to buffer messages so that
Bsend() method can return immediately. But it is the
programmer’s responsibility to tell the system how much buffer
will be needed through MPI.Buffer_attach().

— Ssend() is guaranteed to block until the matching Recv() is
posted.

— Rsend() is obscure—see the MPI standard.
•  It is recommended that you use standard mode sends, and

program defensively to guard against deadlocks (i.e. assume
that the Send() method may block if the receiver is not
ready).
— Send() may behave like Bsend(), or it may behave like Ssend().

COMP 322, Spring 2011 (V.Sarkar)	

30

Avoiding Deadlocks (C versions)"
Consider:

int a[10], b[10], myrank;
MPI_Status status;
...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {
 MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
 MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);
}
else if (myrank == 1) {
 MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD);
 MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD);
}
...

If MPI_Send is blocking, there is a deadlock.

