
COMP 322: Fundamentals of
Parallel Programming

Lecture 17: Task Affinity with Places

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 17 17 February 20121

COMP 322, Spring 2012 (V.Sarkar)

An example Memory Hierarchy --- what is
the cost of a Memory Access?

Registers

L1*cache
*(Sta0c*RAM)

Main*memory
(Dynamic*RAM)

Local*secondary*storage
(local*disks)

Larger,**
slower,*
cheaper*
per*byte

Remote*secondary*storage
(tapes,*distributed*file*systems,*Web*servers)

Local*disks*hold*files*
retrieved*from*disks*on*
remote*network*servers

Main*memory*holds*disk*blocks*
retrieved*from*local*disks

L2*cache
(Sta0c*RAM)

L1*cache*holds*cache*lines*retrieved*
from*L2*cache

CPU*registers*hold*words*retrieved*
from*L1*cache

L2*cache*holds*cache*lines*
retrieved*from*main*memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per*byte

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx2

COMP 322, Spring 2012 (V.Sarkar)

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 8,000 880 100 30 1 0.1 0.06 130,000
access (ns) 375 200 100 70 60 50 40 9
typical size (MB) 0.064 0.256 4 16 64 2,000 8,000 125,000

Storage Trends

DRAM

SRAM

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 500 100 8 0.30 0.01 0.005 0.0003 1,600,000
access (ms) 87 75 28 10 8 4
 3 29
typical size (MB) 1 10 160 1,000 20,000 160,000 1,500,000 1,500,000

Disk

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 19,200 2,900 320 256 100 75 60 320
access (ns) 300 150 35 15 3 2 1.5 200

3 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2012 (V.Sarkar)

Cache Memories
• Cache memories are small, fast SRAM-based memories managed

automatically in hardware.
—Hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3), then
in main memory.

• Typical system structure:

4 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2012 (V.Sarkar)

Examples of Caching in the Hierarchy

Ultimate goal: create a large pool of storage with average cost
per byte that approaches that of the cheap storage near the
bottom of the hierarchy, and average latency that approaches
that of fast storage near the top of the hierarchy.

5 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2012 (V.Sarkar)

Locality
• Principle of Locality:

—Empirical observation: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

• Temporal locality:
— Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
— Items with nearby addresses tend

to be referenced close together in time
— A Java programmer can only influence spatial locality at the intra-object level

– The garbage collector and memory management system determines inter-
object placement

6 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2012 (V.Sarkar)

Locality Example

• Data references
—Reference array elements in succession

(stride-1 reference pattern).
—Reference variable sum each iteration.

• Instruction references
—Reference instructions in sequence.
—Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spa0al*locality

Temporal*locality

Spa0al*locality
Temporal*locality

7 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2012 (V.Sarkar)

Memory Hierarchy in a Multicore
Processor

• Memory hierarchy for a single Intel Xeon Quad-core E5440 HarperTown
processor chip
— A SUG@R node contains TWO such chips, for a total of 8 cores

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

8

Core-pair

COMP 322, Spring 2012 (V.Sarkar)

Programmer Control of Task Assignment to
Processors

• The parallel programming constructs that we’ve
studied thus far result in tasks that are assigned to
processors dynamically by the HJ runtime system
—Programmer does not worry about task assignment details

• Sometimes, programmer control of task assignment
can lead to significant performance advantages due
to improved locality

• Motivation for HJ “places”
—Provide the programmer a mechanism to map each task to a

set of processors when the task is created

9

COMP 322, Spring 2012 (V.Sarkar)

Places in HJ

HJ Places

Java Worker Threads

HJ programmer defines mapping from
HJ tasks to set of places

HJ Tasks

HJ runtime defines mapping from places to one
or more worker Java threads per place

The option “-places p:w” when executing an HJ
program can be used to specify
 p, the number of places
 w, the number of worker threads per place

OS threads

Processor Cores

10

COMP 322, Spring 2012 (V.Sarkar)

Example of –places 4:2 option on a SUG@R
node (4 places w/ 2 workers per place)

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

11

Place 0 Place 1

Place 2

Place 1Place 1

Place 3

COMP 322, Spring 2012 (V.Sarkar)

Places in HJ
here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id returns the id of the place as an int

async at(P) S

• Creates new task to execute statement S at place P

• async S is equivalent to async at(here) S

• Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child
task is executing, not the place where the parent task is executing

12

COMP 322, Spring 2012 (V.Sarkar)

Example of –places 4:2 option on a SUG@R
node (4 places w/ 2 workers per place)

13
Place 1

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

Place 0 Place 1

Place 2 Place 3

// Main program starts at place 0
async at(place.factory.place(0)) S1;
async at(place.factory.place(0)) S2;

async at(place.factory.place(1)) S3;
async at(place.factory.place(1)) S4;
async at(place.factory.place(1)) S5;

async at(place.factory.place(2)) S6;
async at(place.factory.place(2)) S7;
async at(place.factory.place(2)) S8;

async at(place.factory.place(3)) S9;
async at(place.factory.place(3)) S10;

COMP 322, Spring 2012 (V.Sarkar)

Example of –places 1:8 option
(1 place w/ 8 workers per place)

14

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

Place 0

All async’s run at place 0 when there’s only one place!

COMP 322, Spring 2012 (V.Sarkar)15

Example HJ program with places

COMP 322, Spring 2012 (V.Sarkar)16

Chunked Fork-Join Iterative
Averaging Example with Places

• Assume a –places 4:4 configuration with 4 places and 4 workers per places for
execution on a 16-core machine

• Set tasks = 16 so as to create one async per worker
• Use i % place.MAX_PLACES to compute destination place for each async
! Each subarray is processed at same place for successive iterations of for-iter loop

COMP 322, Spring 2012 (V.Sarkar)

Analyzing Locality of Fork-Join Iterative Averaging
Example with Places

17

COMP 322, Spring 2012 (V.Sarkar)

Distributions
• A distribution maps points in a rectangular index space (region) to

places e.g.,
— i " place.factory.place(i % place.MAX_PLACES-1)

• Programmers are free to create any data structure they choose to
store and compute these mappings

• For convenience, the HJ language provides a predefined type,
hj.lang.dist, to simplify working with distributions

• Some public members available in an instance d of hj.lang.dist are as
follows
—d.rank = number of dimensions in the input region for distribution d
—d.get(p) = place for point p mapped by distribution d. It is an error to

call d.get(p) if p.rank != d.rank.
— d.places() = set of places in the range of distribution d
—d.restrictToRegion(pl) = region of points mapped to place pl by

distribution d

18

COMP 322, Spring 2012 (V.Sarkar)

Block Distribution
• dist.factory.block([lo:hi]) creates a block distribution over the

one-dimensional region, lo:hi.

• A block distribution splits the region into contiguous subregions,
one per place, while trying to keep the subregions as close to
equal in size as possible.

• Block distributions can improve the performance of parallel loops
that exhibit spatial locality across contiguous iterations.

• Example in Table 1: dist.factory.block([0:15]) for 4 places

19

COMP 322, Spring 2012 (V.Sarkar)

Block Distribution (contd)
• If the input region is multidimensional, then a block distribution

is computed over the linearized one-dimensional version of the
multidimensional region

• Example in Table 2: dist.factory.block([0:7,0:1]) for 4 places

20

COMP 322, Spring 2012 (V.Sarkar)

Distributed Parallel Loops
• Listing 2 shows the typical pattern used to iterate over an input

region r, while creating one async task for each iteration p at
the place dictated by distribution d i.e., at place d.get(p).

• This pattern works correctly regardless of the rank and
contents of input region r and input distribution d i.e., it is not
constrained to block distributions

21

COMP 322, Spring 2012 (V.Sarkar)

Cyclic Distribution
• dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the

one-dimensional region, lo:hi.

• A cyclic distribution “cycles” through places 0 … place.MAX
PLACES − 1 when spanning the input region

• Cyclic distributions can improve the performance of parallel
loops that exhibit load imbalance

• Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

• Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places

22

COMP 322, Spring 2012 (V.Sarkar)

Announcements (REMINDER)
• Homework 3 due on Wednesday, Feb 22nd

—Performance results for parts 2 and 3 of assignment must be
obtained on Sugar (see Section 4)

• No lab next week
—Use the time for HW3 and to prepare for Exam 1

• Exam 1 will be held in the lecture on Friday, Feb 24th
—Closed book 50-minute exam
—Scope of exam includes lectures up to Monday, Feb 20th
—Feb 22nd lecture will be a midterm review before exam
—Contact me ASAP if you have an extenuating circumstance and need

to take the midterm at an alternate time

23

