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An example Memory Hierarchy --- what is 
the cost of a Memory Access? 
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Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx2
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Metric  1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB  8,000 880 100 30 1 0.1 0.06 130,000
access (ns)  375 200 100 70 60 50 40 9
typical size (MB)  0.064 0.256 4 16 64 2,000 8,000 125,000 

Storage Trends

DRAM

SRAM

Metric  1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB  500 100 8 0.30 0.01 0.005 0.0003 1,600,000
access (ms)  87 75 28 10 8 4
 3 29
typical size (MB)  1 10 160 1,000 20,000 160,000 1,500,000 1,500,000

Disk

Metric  1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB  19,200 2,900 320 256 100 75 60 320
access (ns)  300 150 35 15 3 2 1.5 200

3 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Cache Memories
• Cache memories are small, fast SRAM-based memories managed 

automatically in hardware. 
—Hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3), then 
in main memory.

• Typical system structure:

4 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Examples of Caching in the Hierarchy

Ultimate goal: create a large pool of storage with average cost 
per byte that approaches that of the cheap storage near the 
bottom of the hierarchy, and average latency that approaches 
that of  fast storage near the top of the hierarchy.

5 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Locality
• Principle of Locality: 

—Empirical observation: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently

• Temporal locality:  
— Recently referenced items are likely 

to be referenced again in the near future

• Spatial locality:  
— Items with nearby addresses tend 

to be referenced close together in time
— A Java programmer can only influence spatial locality at the intra-object level

– The garbage collector and memory management system determines inter-
object placement

6 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Locality Example

• Data references
—Reference array elements in succession 

(stride-1 reference pattern).
—Reference variable sum each iteration.

• Instruction references
—Reference instructions in sequence.
—Cycle through loop repeatedly. 

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spa0al*locality

Temporal*locality

Spa0al*locality
Temporal*locality

7 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Memory Hierarchy in a Multicore 
Processor

• Memory hierarchy for a single Intel Xeon Quad-core E5440 HarperTown 
processor chip
— A SUG@R node contains TWO such chips, for a total of 8 cores
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Programmer Control of Task Assignment to 
Processors

• The parallel programming constructs that we’ve 
studied thus far result in tasks that are assigned to 
processors dynamically by the HJ runtime system
—Programmer does not worry about task assignment details

• Sometimes, programmer control of task assignment 
can lead to significant performance advantages due 
to improved locality

• Motivation for HJ “places”
—Provide the programmer a mechanism to map each task to a 

set of processors when the task is created

9
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Places in HJ

HJ Places

Java Worker Threads

HJ programmer defines mapping from 
HJ tasks to set of places

HJ Tasks

HJ runtime defines mapping from places to one 
or more worker Java threads per place 

The option “-places p:w” when executing an HJ 
program can be used to specify
 p, the number of places
 w, the number of worker threads per place

OS threads

Processor Cores
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Example of –places 4:2 option on a SUG@R 
node (4 places w/ 2 workers per place)
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Places in HJ
here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) =  place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id returns the id of the place as an int

async at(P) S

• Creates new task to execute statement S at place P

• async S is equivalent to async at(here) S

• Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child 
task is executing, not the place where the parent task is executing

12
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Example of –places 4:2 option on a SUG@R 
node (4 places w/ 2 workers per place)
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// Main program starts at place 0
async at(place.factory.place(0)) S1; 
async at(place.factory.place(0)) S2;

async at(place.factory.place(1)) S3; 
async at(place.factory.place(1)) S4;
async at(place.factory.place(1)) S5;

async at(place.factory.place(2)) S6;
async at(place.factory.place(2)) S7;
async at(place.factory.place(2)) S8;

async at(place.factory.place(3)) S9;
async at(place.factory.place(3)) S10;
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Example of –places 1:8 option
(1 place w/ 8 workers per place)
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All async’s run at place 0 when there’s only one place!
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Example HJ program with places
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Chunked Fork-Join Iterative 
Averaging Example with Places

• Assume a –places 4:4 configuration with 4 places and 4 workers per places for 
execution on a 16-core machine

• Set tasks = 16 so as to create one async per worker
• Use i % place.MAX_PLACES to compute destination place for each async
! Each subarray is processed at same place for successive iterations of for-iter loop
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Analyzing Locality of Fork-Join Iterative Averaging 
Example with Places
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Distributions
• A distribution maps points in a rectangular index space (region) to 

places e.g.,
—   i " place.factory.place(i % place.MAX_PLACES-1)

• Programmers are free to create any data structure they choose to 
store and compute these mappings

• For convenience, the HJ language provides a predefined type, 
hj.lang.dist, to simplify working with distributions

• Some public members available in an instance d of hj.lang.dist are as 
follows
—d.rank = number of dimensions in the input region for distribution d
—d.get(p) = place for point p mapped by distribution d. It is an error to 

call d.get(p) if p.rank != d.rank.
— d.places() = set of places in the range of distribution d
—d.restrictToRegion(pl) = region of points mapped to place pl by 

distribution d

18
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Block Distribution
• dist.factory.block([lo:hi]) creates a block distribution over the 

one-dimensional region, lo:hi.

• A block distribution splits the region into contiguous subregions, 
one per place, while trying to keep the subregions as close to 
equal in size as possible. 

• Block distributions can improve the performance of parallel loops 
that exhibit spatial locality across contiguous iterations.

• Example in Table 1: dist.factory.block([0:15]) for 4 places

19
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Block Distribution (contd)
• If the input region is multidimensional, then a block distribution 

is computed over the linearized one-dimensional version of the 
multidimensional region

• Example in Table 2: dist.factory.block([0:7,0:1]) for 4 places

20
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Distributed Parallel Loops
• Listing 2 shows the typical pattern used to iterate over an input 

region r, while creating one async task for each iteration p at 
the place dictated by distribution d i.e., at place d.get(p). 

• This pattern works correctly regardless of the rank and 
contents of input region r and input distribution d i.e., it is not 
constrained to block distributions

21
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Cyclic Distribution
• dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the 

one-dimensional region, lo:hi. 

• A cyclic distribution “cycles” through places 0 … place.MAX 
PLACES − 1 when spanning the input region

• Cyclic distributions can improve the performance of parallel 
loops that exhibit load imbalance

• Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

• Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places

22
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Announcements (REMINDER)
• Homework 3 due on Wednesday, Feb 22nd

—Performance results for parts 2 and 3 of assignment must be 
obtained on Sugar (see Section 4)

• No lab next week
—Use the time for HW3 and to prepare for Exam 1

• Exam 1 will be held in the lecture on Friday, Feb 24th
—Closed book 50-minute exam
—Scope of exam includes lectures up to Monday, Feb 20th
—Feb 22nd lecture will be a midterm review before exam
—Contact me ASAP if you have an extenuating circumstance and need 

to take the midterm at an alternate time
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