
COMP 322: Fundamentals of
Parallel Programming

Lecture 2: Async-Finish Parallel
Programming and Computation Graphs

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 2 9 January 2013

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Async-Finish Parallel Programming (contd)

• Computation Graphs

• Acknowledgments
—Cilk lectures, http://supertech.csail.mit.edu/cilk/
—COMP 322 Module 1 handout, Sections 1.1, 1.2, 2.1, 2.2

– https://svn.rice.edu/r/comp322/course/
module1-2013-01-06.pdf

2

COMP 322, Spring 2013 (V.Sarkar)3

Async and Finish Statements for Task
Creation and Termination

async S

• Creates a new child task that
executes statement S

finish S
§ Execute S, but wait until all

asyncs in S’s scope have
terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0
 //Wait for T1
} //End finish
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

COMP 322, Spring 2013 (V.Sarkar)

Some Properties of Async & Finish constructs
1. Scope of async/finish can be any arbitrary statement

— async/finish constructs can be arbitrarily nested e.g.,
— finish { async S1; finish { async S2; S3; } S4; } S5;

2. A method may return before all its async’s have terminated
— Enclose method body in a finish if you don’t want this to happen
— main() method is enclosed in an implicit finish e.g.,
— main(){ foo();} void foo() {async S1; S2; return;}

3. Each dynamic async task will have a unique Immediately Enclosing
Finish (IEF) at runtime

4. Async/finish constructs cannot “deadlock”
— Cannot have a situation where both task A waits for task B to finish,

and task B waits for task A to finish

5. Async tasks can read/write shared data via objects and arrays
— Local variables have special restrictions

4

COMP 322, Spring 2013 (V.Sarkar)

static
fields

SHARED

Local vars

PRIVATE

heap
data:

objects,
arrays

SHARED

Local vars

PRIVATE

Shared and Private data in
Java’s Storage Model

Java’s storage model contains three memory regions:

1. Static Data: region of memory reserved for variables
that are not allocated or destroyed during a class’
lifetime, such as static fields.
• Static fields can be shared among threads/tasks

2. Heap Data: region of memory for dynamically
allocated objects and arrays (created by “new”).
• Heap data can be shared among threads/tasks

3. Stack Data: Each time you call a method, Java
allocates a new block of memory called a stack frame
to hold its local variables
• Local variables are private to a given thread/task

All references (pointers) must point to heap data --- no
references can point to static or stack data . . .

5

COMP 322, Spring 2013 (V.Sarkar)6

Local Variables
Three rules for accessing local variables across tasks in HJ:

1) An async may read the value of any final outer local var
 final int i1 = 1; async { ... = i1; /* i1=1 */ }

2) An async may read the value of any non-final outer local var
(copied on entry to async like method parameters)

 int i2 = 2; // i2=2 is copied on entry to the async

 async { ... = i2; /* i2=2*/}

 i2 = 3; // This assignment is not seen by the above async

3) An async is not permitted to modify an outer local var
 int[] A; async { A = ...; /*ERROR*/ A[i] = ...; /*OK*/ }

COMP 322, Spring 2013 (V.Sarkar)7

Converting sequential Java programs to
parallel Async-Finish HJ programs

One possible approach:
1. Create “ideal” parallel version
— Insert async’s at all points where parallelism can logically
be exploited

— Insert finish’s to ensure that the parallel version produces
the same results as the sequential version

2. Transform ideal parallelism to useful parallelism
— Merge or remove async’s to amortize overhead
— Replace finish by more efficient synchronization constructs
— (to be covered later in course)

COMP 322, Spring 2013 (V.Sarkar)

Example usages of async for ideal
parallelism (Listing 1, Module 1, page 9)

8

COMP 322, Spring 2013 (V.Sarkar)

Insertion of finish for correct ideal
parallelism (Listing 5, Module 1, page 12)

9

COMP 322, Spring 2013 (V.Sarkar)

Dynamic Finish-Async nesting structure and
Immediately Enclosing Finish (IEF)

• IEF(A3) = IEF(A4) = F2

• IEF(A1) = IEF(A2) = F1

• Module 1: Listing 6 & Figure 7

10

Task A4

finish

async async

Task A0 (Part 3)

Task A0 (Part 2)

finish
Task A0 (Part 1)

async

Task A1

async

Task A2
Task A3

F2

F1

COMP 322, Spring 2013 (V.Sarkar)

How can an Async Task interact with its
Parent Task?

• Data flow
—Async task can read from static fields, objects, arrays, and local

variables written by parent task
– Same rule as method calls, except that parent’s local variables are

passed as implicit parameters
— Async task can write to static fields, objects, arrays (but not parent’s

local variables) to be read by parent task after end-finish
– Same rule as method calls, except that method calls also have return

values
– We will learn soon about an extension to asyncs with return values

(futures)

• Control flow
—Async task can execute a return statement (different from method return)
— Async task can throw an exception
—NOTE: break/continue cannot cross async boundaries

11

COMP 322, Spring 2013 (V.Sarkar)

Data Flow: Use of Static Fields to Communicate
Return Value from an Async Task

1. static int sum1 = 0, sum2 = 0;

2. public static void main(String[] argv) { // caller

3. int[] X = new int[...];

4. ... // Initialize X

5. int sum;

6. finish { // Async’s have same access rules as methods

7. async for(int i=X.length/2; i < X.length; i++)

8. sum2 += X[i];

9. async for(int i=0; i < X.length/2; i++)

10. sum1 += X[i];

11. }

12. sum = sum1 + sum2;

13.

14. }

12

COMP 322, Spring 2013 (V.Sarkar)

Data Flow: Use of an Object to Communicate
Return Values from Async Tasks (Better Approach)
1. public class TwoIntegers {int sum1; int sum2;}

2. . . .

3. public static void main(String[] argv) { // caller

4. int[] X = new int[...]; ... // Initialize X

5. int sum;

6. TwoIntegers r = new TwoIntegers();

7. finish { // Async’s have same access rules as methods

8. async for(int i=X.length/2; i < X.length; i++)

9. r.sum2 += X[i];

10. async for(int i=0; i < X.length/2; i++)

11. r.sum1 += X[i];

12. }

13. sum = r.sum1 + r.sum2;

14.

15. }

13

COMP 322, Spring 2013 (V.Sarkar)

Control Flow: Semantics of HJ return
statement

• Java semantics for return
—Return from enclosing method

• HJ semantics for return statement
—Return from immediately enclosing async or method

1.void foo() {

2. if (...) return; // Returns from method foo()

3. async { ... return; ... } // Returns from async

4. . . .

5.}

14

COMP 322, Spring 2013 (V.Sarkar)

Control Flow: Semantics of HJ break
and continue statements

• Java semantics for break/continue
— Perform appropriate action for innermost enclosing loop (or labeled loop)
— It’s an error to execute a break/continue statement without an enclosing loop

• HJ semantics for break/continue
— It’s also an error to execute a break/continue statement in an async without

an enclosing loop in the same async
— Results in cryptic error messages from HJ compiler

– “Target of branch statement not found”
– “Unreachable statement”

1. void foo() {

2. while (...) {

3. async {

4. while (...) { ... break; ... } // Okay

5. break; // Error --- does not relate to while loop in line 2

6. } } }

15

COMP 322, Spring 2013 (V.Sarkar)

Examples of Common Errors made by
beginner HJ Programmers

1. finish for (int i = 0; i <= N - M; i++) {

2. int j;

3. async {

4. for (j = 0; j < M; j++) {

5. async {

6. if (text[i+j] != pattern[j]) break;

7. }

8. if (j == M) return i;// found at offset i

9. }

10. }

16

Async cannot
modify local variable in

parent’s scope

No loop
enclosing break

in async

Return statement
in basic async task cannot take

a value

COMP 322, Spring 2013 (V.Sarkar)

Habanero-Java (HJ) Compilation and
Execution Environment

17

Foo.hj

HJ compiler HJ compiler translates Foo.hj to Foo.class, and inserts
calls to HJ runtime as needed

Foo.class

HJ source program --- must contain a class named Foo
with a public static void main(String[] args) method

HJ Runtime Environment =
JRE + HJ libraries +

HJ Multithreaded Runtime

Data Race Detection Output, HJ Computation Graph,
HJ Abstract Performance Metrics
(all enabled by appropriate options)

HJ Program Output

hjc Foo.hj

hj –places m:n Foo

HJ runtime allocates m*n worker threads across m “places”
(default values: m = 1 place, n = # hardware cores/threads)

DrHJ IDE (optional)

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Async-Finish Parallel Programming (contd)

• Computation Graphs

• Acknowledgments
—Cilk lectures, http://supertech.csail.mit.edu/cilk/
—COMP 322 Module 1 handout, Sections 1.3, 2.3, 2.4, 3.1

– https://svn.rice.edu/r/comp322/course/
module1-2013-01-06.pdf

18

COMP 322, Spring 2013 (V.Sarkar)19

Which statements can potentially be
executed in parallel with each other?

1. finish { // F1

2. async A;

3. finish { // F2

4. async B1;

5. async B2;

6. } // F2

7. B3;

8. } // F1

F1-endF1-start F2-start F2-end

A

B1

B2

B3

Computation Graph

spawn join

COMP 322, Spring 2013 (V.Sarkar)20

Computation Graphs for HJ Programs
• A Computation Graph (CG) captures the dynamic execution of an

HJ program, for a specific input

• CG nodes are “steps” in the program’s execution
— A step is a sequential subcomputation without any async, begin-finish

and end-finish operations

• CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a task
— “Spawn” edges connect parent tasks to child async tasks
— “Join” edges connect the end of each async task to its IEF’s end-

finish operations

• All computation graphs must be acyclic
—It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic
graphs” (dags)

COMP 322, Spring 2013 (V.Sarkar)21

Complexity Measures for Computation Graphs

Define

• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when
adding up execution times of all nodes in the path
—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path
length)

—CPL(G) is also the smallest possible execution time
for the computation graph

COMP 322, Spring 2013 (V.Sarkar)22

What is the critical path length of this
parallel computation?

1. finish { // F1

2. async A; // Boil pasta

3. finish { // F2

4. async B1; // Chop veggies

5. async B2; // Brown meat

6. } // F2

7. B3; // Make pasta sauce

8. } // F1

Step A

Step B1 Step B2

Step B3

COMP 322, Spring 2013 (V.Sarkar)23

Ideal Parallelism

Define ideal parallelism of
Computation G Graph as the
ratio, WORK(G)/CPL(G)

Ideal Parallelism is independent
of the number of processors
that the program executes on,
and only depends on the
computation graph

What is the ideal parallelism
of this graph?
Time for worksheet #2!

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1

COMP 322, Spring 2013 (V.Sarkar)

Course Announcements
• Homework 1 has been posted

—Contains written and programming components
—Due by 5pm on Wednesday, Jan 23rd
—Must be submitted using “turnin” script introduced in Lab 1

– In case of problems, email a zip file to comp322-staff at
mailman.rice.edu before the deadline

—See course web site for penalties for late submissions

• Instructor’s office hours are during 2pm - 3pm on MWF
—Please stop by if you have problems with any of the following

– Accessing the Module 1 handout
– Using the turnin script
– You did not receive the welcome email sent to comp322-all on

Sunday night

24

COMP 322, Spring 2013 (V.Sarkar)25

Worksheet #2: what is the critical path length
and ideal parallelism of this graph?

• time(N) is labeled for all nodes N in the graph

WORK(G) = 26

CPL(G) =

Ideal Parallelism
= WORK(G)/CPL(G)
=

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1

Name 1: ___________________ Name 2: ___________________

