
COMP 322: Fundamentals of
Parallel Programming

Lecture 20: Isolated (contd), Monitors,
Java Concurrent Collections

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 20 6 March 2013

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #19:
Insertion of isolated for correctness

1.class IsolatedPRNG {
2. private int seed;
3. public int nextSeed() {
4. int retVal;
5. isolated {
6. retVal = seed;
7. seed = nextInt(retVal);
8. }
9. return retVal;
10.} // nextSeed()
11. . . .
12.} // IsolatedPRNG

2

The goal of IsolatedPRNG is to implement a single Pseudo Random
Number Generator object that can be shared by multiple tasks.
Show the isolated statement(s) that you can insert in method
nextSeed() to avoid data races and guarantee proper semantics.

main() { // Pseudocode
 // Initial seed = 1
 IsolatedPRNG r = new IsolatedPRNG(1);
 async { print r.nextSeed(); ... }
 async { print r.nextSeed(); ... }
} // main()

What might happen if only line 6 and/or
line7 were enclosed in separate
isolated statements?

COMP 322, Spring 2013 (V. Sarkar)

Parallel Spanning Tree Algorithm using
isolated statement (Recap)

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree

4. boolean tryLabeling(V n) {
5. isolated if (parent == null) parent=n;

6. return parent == n; // return true for success
7. } // tryLabeling
8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {
10. V child = neighbors[i];

11. if (child.tryLabeling(this))
12. async child.compute(); //escaping async
13. }

14. } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

3

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure source:
http://en.wikipedia.org/wiki/Spanning_tree

Example graph
(root=1, spanning
tree edge shown
as arrow from
child to parent)

COMP 322, Spring 2013 (V. Sarkar)

Spanning Tree Definition
• A spanning tree, T, of a connected undirected graph G is

• rooted at some vertex of G

• defined by a parent map for each vertex

• contains all the vertices of G, i.e. spans all vertices

• contains exactly |v| - 1 edges

• adding any other edge will create a cycle

• contains no cycles (a tree!)

• implies the edges involved in T is a subset of the edges in
G

4

COMP 322, Spring 2013 (V. Sarkar)

An Example Graph with 4 possible
spanning trees rooted at vertex A

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

Vertex Parent

A null
B D
C A
D C

Vertex Parent

A null
B A
C D
D B

Vertex Parent

A null
B A
C A
D B

Vertex Parent

A null
B A
C A
D C

Example Graph:

Spanning Trees:

5

COMP 322, Spring 2013 (V. Sarkar)

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. V parent; // output value of parent in spanning tree

4. boolean tryLabeling(V n) {
5. isolated(this) if (parent == null) parent=n;

6. return parent == n; // return true for success
7. } // tryLabeling
8. void compute() {

9. for (int i=0; i<neighbors.length; i++) {
10. V child = neighbors[i];

11. if (child.tryLabeling(this))
12. async child.compute(); //escaping async
13. }

14. } // compute
15.} // class V

16.. . .
17.root.parent = root; // Use self-cycle to identify root
18.finish root.compute();

19.. . .

Parallel Spanning Tree Algorithm using
Object-based isolation

6

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent. AtomicReference methods and
their equivalent isolated statements

7

Methods in java.util.concurrent.AtomicReference class and their
equivalent HJ isolated statements. Variable v refers to an
AtomicReference object in column 2 and to a standard non-atomic
Java object in column 3. ref refers to a field of type Object.

AtomicReference<T> can be used to specify a type parameter.

COMP 322, Spring 2013 (V. Sarkar)

Parallel Spanning Tree Algorithm using
AtomicReference

1. class V {
2. V [] neighbors; // adjacency list for input graph
3. AtomicReference parent; // output value of parent in spanning tree
4. boolean tryLabeling(V n) {
5. return parent.compareAndSet(null, n);
6. } // tryLabeling
7. void compute() {
8. for (int i=0; i<neighbors.length; i++) {
9. V child = neighbors[i];
10. if (child.tryLabeling(this))
11. async child.compute(); //escaping async
12. }
13. } // compute
14.} // class V
15.. . .
16.root.parent = root; // Use self-cycle to identify root
17.finish root.compute();
18.. . .

8

COMP 322, Spring 2013 (V. Sarkar)

Semantics of Exceptions and Async’s
within an Isolated Statement

1. isolated {

2. int t1 = p.x;

3. p.x++;

4. // Task execution terminates with NullPointerException

5. // if q==null (as in non-isolated case)

6. int t2 = q.x;

7. q.x--;

8. // Async creation (but not execution) is part of mutual

9. // exclusion construct. Async can logically be executed

10. // after isolated statement.

11. async { ... t1 ... t2 ... }

12. . . .

13. } // isolated

9

COMP 322, Spring 2013 (V. Sarkar)

Three cases of contention among
isolated statements

1. Low contention: when isolated statements are executed
infrequently

— Use of global isolated statements is usually the best approach. No
visible benefit from other techniques because they incur overhead
that is not needed since contention is low.

2. Moderate contention (no variable is a “hot spot”): when
serialization of all isolated statements limits performance, but
serializing only interfering isolated statements results in good
scalability

— Atomic variables and object-based isolation usually do well in this
scenario since the benefit obtained from reduced serialization
outweighs any extra overhead incurred.

3. High contention (one or more variables are hot spots): when
interfering isolated statements dominate the program execution
time

— Best approach in such cases is to find an alternative approach to
isolated e.g., use of finish/phaser accumulators

10

COMP 322, Spring 2013 (V. Sarkar)

Monitors --- an object-oriented approach to isolation

• A monitor is an object containing

• some local variables (private data)

• some methods that operate on local data (monitor regions)

• Only one task can be active in a monitor at a time, executing some
monitor region

• Analogous to a critical section

• Monitors can also be used for

• Mutual exclusion

• Cooperation

11

Figure source: http://www.artima.com/insidejvm/ed2/images/fig20-1.gif

COMP 322, Spring 2013 (V. Sarkar)

Monitors – a Diagrammatic summary

12

COMP 322, Spring 2013 (V. Sarkar)

Converting Standard Java
Libraries to Monitors

Different approaches:
1. Restrict access to a single task è no modification needed
2. Ensure that each call to a public method is isolated è excessive

serialization
3. Use specialized implementations that minimize serialization across

public methods è Java Concurrent Collections

• We will focus on three java.util.concurrent classes that can be used
freely in HJ programs, analogous to Java Atomic Variables

— ConcurrentHashMap, ConcurrentLinkedQueue, CopyOnWriteArraySet

• Other j.u.c. classes can be used in standard Java, but not in HJ
because they may perform blocking operations

— ArrayBlockingQueue, CountDownLatch, CyclicBarrier, DelayQueue,
Exchanger, FutureTask, LinkedBlockingQueue, Phaser
PriorityBlockingQueue, Semaphore, SynchronousQueue

13

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent library

• Atomic variables
—Efficient implementations of special-case patterns of isolated statements

• Concurrent Collections:
—Queues, blocking queues, concurrent hash map, …
—Data structures designed for concurrent environments

• Executors, Thread pools and Futures
—Execution frameworks for asynchronous tasking

• Locks and Conditions
—More flexible synchronization control
—Read/write locks

• Synchronizers: Semaphore, Latch, Barrier, Exchanger, Phaser
—Tools for thread coordination

• WARNING: only a small subset of the full java.util.concurrent library can
safely be used in HJ programs

—Atomic variables and some concurrent collections are part of the safe subset
—We will study the full library later this semester as part of Java Concurrency

COMP 322, Spring 2013 (V. Sarkar)

The Java Map Interface
—Map describes a type that stores a collection of key-value pairs
—A Map associates a key with a value
—The keys must be unique

– the values need not be unique
—Useful for implementing software caches (where a program stores

key-value maps obtained from an external source such as a
database), dictionaries, sparse arrays, …

—A Map is often implemented with a hash table (HashMap)
—Hash tables attempt to provide constant-time access to objects

based on a key (String or Integer)
– key could be your Student ID, your telephone number, social

security number, account number, …
—The direct access is made possible by converting the key to an array

index using a hash function that returns values in the range 0 …
ARRAY_SIZE-1, typically by using a (mod ARRAY_SIZE) operation

15

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent.concurrentHashMap
• Implements ConcurrentMap sub-interface of Map

• Allows read (traversal) and write (update) operations to overlap
with each other

• Some operations are atomic with respect to each other e.g.,
—get(), put(), putIfAbsent(), remove()

• Aggregate operations may not be viewed atomically by other
operations e.g.,
—putAll(), clear()

• Expected degree of parallelism can be specified in
ConcurrentHashMap constructor
—ConcurrentHashMap(initialCapacity, loadFactor, concurrencyLevel)
—A larger value of concurrencyLevel results in less serialization, but a

larger space overhead for storing the ConcurrentHashMap

16

COMP 322, Spring 2013 (V. Sarkar)

Concurrent Collection Performance

17

COMP 322, Spring 2013 (V. Sarkar)

Example usage of ConcurrentHashMap in
org.mirrorfinder.model.BaseDirectory

18

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent.ConcurrentLinkedQueue

• Queue interface added to java.util
– interface Queue extends Collection and includes

 boolean offer(E x); // same as add() in Collection
 E poll(); // remove head of queue if non-empty
 E remove(o) throws NoSuchElementException;
 E peek(); // examine head of queue without removing it

• Non-blocking operations
—Return false when full
—Return null when empty

• Fast thread-safe non-blocking implementation of Queue interface:
ConcurrentLinkedQueue

19

COMP 322, Spring 2013 (V. Sarkar)

Example usage of ConcurrentLinkedQueue in
org.apache.catalina.tribes.io.BufferPool15Impl

20

COMP 322, Spring 2013 (V. Sarkar)

Single-Producer Single-Consumer
Bounded Buffer Problem (Recap)

A bounded buffer with a single producer and a single consumer. The
Put and Get cursors indicate where the producer will insert the next
item and where the consumer will remove its next item.

We will revisit this problem with multiple producers and consumers
later in the course
•Requires nondeterministic merge in general

21

COMP 322, Spring 2013 (V. Sarkar)

Single-Producer Single-Consumer Bounded
Buffer using Bounded Phaser (Recap)

1. finish {

2. phaser ph = new phaser(<SIG_WAIT>, bound_size);

3. async phased (ph<SIG>)

4. while (…) { insert(); next; } // producer

5. async phased (ph<WAIT>)

6. while (…) { next; remove(); } // consumer

7. }

• How would this code behave if there was no bound specified for the
phaser?

22

Got the idea? Let’s try an example with ConcurrentLinkedQueue in
Worksheet 20.

COMP 322, Spring 2013 (V. Sarkar)

java.util.concurrent.CopyOnWriteArraySet

• Set implementation optimized for case when sets are not large,
and read operations dominate update operations in frequency

• This is because update operations such as add() and remove()
involve making copies of the array
—Functional approach to mutation

• Iterators can traverse array “snapshots” efficiently without
worrying about changes during the traversal.

23

COMP 322, Spring 2013 (V. Sarkar)

Example usage of CopyOnWriteArraySet in
org.norther.tammi.spray.freemarker.DefaultTemplateLoader

24

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #20:
java.util.concurrent.ConcurrentLinkedQueue

25

Name 1: ___________________ Name 2: ___________________

Consider the code below that uses a ConcurrentLinkedQueue to solve the
unbounded buffer problem with a single producer and a single consumer.

Can any async task in this version get into an infinite loop without producing
or consuming an item? Explain why or why not. Also say what might happen
if these two async tasks are only permitted to run on one (the same) HJ
worker.

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #20 (contd)

26

1. q = new ConcurrentLinkedQueue();

2. finish {

3. async while (true) {

4. o = new ... ; // allocate item

5. q.offer(o);

6. } // producer

7. async while (true) {

8. o = q.poll(); // remove item

9. if (o != null) o.process();

10. } // consumer

11. }

