
COMP 322: Fundamentals of
Parallel Programming

Lecture 24:
Safety and Liveness Properties,

Introduction to Java Threads

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 24 15 March 2013

COMP 322, Spring 2013 (V. Sarkar)

Safety vs. Liveness

• In a concurrent setting, we need to specify both the safety and
the liveness properties of an object

• Need a way to define
—Safety: when an implementation is correct
—Liveness: the conditions under which it guarantees progress

• Data race freedom is a desirable safety property for most
parallel programs

• Linearizability is a desirable safety property for most
concurrent objects

2

COMP 322, Spring 2013 (V. Sarkar)

Desirable Properties of Parallel Program
Executions

• Data-race freedom

• Termination
• But some applications are designed to be non-

terminating
• Liveness = a program’s ability to make progress in a

timely manner
• Different levels of liveness guarantees (from weaker to

stronger)
—Deadlock freedom
—Livelock freedom
—Starvation freedom
—Bounded wait

3

COMP 322, Spring 2013 (V. Sarkar)

Terminating Parallel Program Executions
• A parallel program execution is terminating if all sequential tasks in the

program terminate

• Example of a nondeterministic data-race-free program with a nonterminating
execution

1. p.x = false;
2. finish {
3. async { // S1
4. boolean b = false; do { isolated b = p.x; } while (! b);
5. }
6. isolated p.x = true; // S2
7. } // finish

• Some executions of this program may be terminating, and some not

• Cannot assume in general that statement S2 will ever get a chance to execute
if async S1 is nonterminating e.g., consider case when program is run with
one worker (-places 1:1)

4

COMP 322, Spring 2013 (V. Sarkar)

Deadlock-Free Parallel Program Executions
• A parallel program execution is deadlock-free if no task’s execution

remains incomplete due to it being blocked awaiting some condition

• Example of a program with a deadlocking execution
 DataDrivenFuture left = new DataDrivenFuture();
 DataDrivenFuture right = new DataDrivenFuture();
 finish {
 async await (left) right.put(rightBuilder()); // Task1
 async await (right) left.put(leftBuilder()); // Task2
 }

• In this case, Task1 and Task2 are in a deadlock cycle.
– Three constructs that can lead to deadlock in HJ: async await, finish +

actors, explicit phaser wait (instead of next)

—There are many mechanisms that can lead to deadlock cycles in other
programming models (e.g., locks)

5

COMP 322, Spring 2013 (V. Sarkar)

Livelock-Free Parallel Program Executions
• A parallel program execution exhibits livelock if two or more tasks repeat

the same interactions without making any progress (special case of
nontermination)

• Livelock example:
// Task 1
incrToTwo(AtomicInteger ai) {
 // increment ai till it reaches 2
 while (ai.incrementAndGet() < 2);
}

• Many well-intended approaches to avoid deadlock result in livelock
instead

• Any data-race-free HJ program without isolated/atomic-variables/actors is
guaranteed to be livelock-free (may be nonterminating in a single task,
however)

// Task 2
decrToNegativeTwo(AtomicInteger ai) {
 // decrement ai till it reaches -2
 while (a.decrementAndGet() > -2);
}

6

COMP 322, Spring 2013 (V. Sarkar)

Starvation-Free Parallel Program
Executions

• A parallel program execution exhibits starvation if some task is
repeatedly denied the opportunity to make progress
—Starvation-freedom is sometimes referred to as “lock-out freedom”
—Starvation is possible in HJ programs, since all tasks in the same

program are assumed to be cooperating, rather than competing
– If starvation occurs in a deadlock-free HJ program, the

“equivalent” sequential program must be non-terminating

• Classic source of starvation: “Priority Inversion” problem for OS
threads
—Thread A is at high priority, waiting for result or resource from Thread

C at low priority
—Thread B at intermediate priority is CPU-bound
—Thread C never runs, hence thread A never runs
—Fix: when a high priority thread waits for a low priority thread, boost

the priority of the low-priority thread

7

COMP 322, Spring 2013 (V. Sarkar)

Bounded Wait
• A parallel program execution exhibits bounded wait if each task

requesting a resource should only have to wait for a bounded
number of other tasks to “cut in line” i.e., to gain access to the
resource after its request has been registered.

• If bound = 0, then the program execution is fair

8

Do you understand deadlock, livelock, starvation, and
unbounded wait? Let’s give Worksheet #24 a try.

COMP 322, Spring 2013 (V. Sarkar)9

ProgressMutual ExclusionBounded Wait

Oversimplifying Assumptions

Are there door
locks?No cutting in!

Well, Did you
see anybody

go in?

COMP 322, Spring 2013 (V. Sarkar)10

• Progress?
—If no process is

waiting in its critical
section and several
processes are trying
to get into their
critical section, then
entry to the critical
section cannot be
postponed
indefinitely

• Bounded Wait?
—A process

requesting access
to a resource
should only have to
wait for a bounded
number of other
processes to
access the resource
that requested
access after it

COMP 322, Spring 2012 (V.Sarkar)

Classification of Parallel
Programming Models

• Library approaches
—POSIX threads
—Message-Passing Interface (MPI)
—MapReduce frameworks

• Pseudocomment “pragma” approaches
—OpenMP

• Language approaches
—Habanero-Java
—Unified Parallel C
—Co-Array Fortran
—Chapel
—X10
—. . .

==> Java takes a library approach with a little bit of language support
(synchronized keyword)

11

COMP 322, Spring 2012 (V.Sarkar)

Closures
• Library-based approaches to parallel programming require

interfaces in which computations can be passed as data
• Recall that a closure is a first-class function with free variables

that are bound in function’s lexical environment e.g., the
anonymous lambda expression in the following Scheme program
is a closure
; Return a list of all books with at least THRESHOLD copies sold.
(define (best-selling-books threshold)
 (filter
 (lambda (book)
 (>= (book-sales book) threshold))
 book-list))

• Note that the value of free variable threshold is captured when the
lambda expression is defined

12

COMP 322, Spring 2012 (V.Sarkar)

HJ Asyncs and Closures
• The body of an HJ async task is a parameter-less closure that is

both created and enabled for execution at the point when the
async statement is executed

• An async captures the values of free variables (local variables in
outer scopes) when it is created
—e.g., variable len in Listing 1 below

13

COMP 322, Spring 2012 (V.Sarkar)

java.lang.Runnable interface
• Any class that implements java.lang.Runnable must provide a

parameter-less run() method with void return type
• Lines 3-7 in Listing 2 show the creation of an instance of an

anonymous inner class that implements the Runnable interface

• The computation in the run() method can be invoked sequentially
by calling r.run()
—We will see next how it can be invoked in parallel

14

COMP 322, Spring 2012 (V.Sarkar)

java.lang.Thread class
• Execution of a Java program begins with an instance of Thread

created by the Java Virtual Machine (JVM) that executes the
program’s main() method.

• Parallelism can be introduced by creating additional instances of
class Thread that execute as parallel threads.

15

COMP 322, Spring 2012 (V.Sarkar)

HJ runtime uses Java threads as workers …

• HJ runtime creates a small number of worker threads, typically one per core

• Workers push async’s/continuations into a logical work queue

• when an async operation is performed

• when an end-finish operation is reached

• Workers pull task/continuation work item when they are idle

16

COMP 322, Spring 2012 (V.Sarkar)17

… because programming directly with Java threads
can be expensive

Fork-Join Microbenchmark Measurements
(execution time in micro-seconds)

COMP 322, Spring 2012 (V.Sarkar)

Two ways to specify computation for a
Java thread

1. Define a class that implements the Runnable interface
and pass an instance of that class to the Thread
constructor in line 3 of slide 15

— It is common to create an instance of an anonymous
inner class that implements Runnable for this
purpose. In this case, the Runnable instance defines
the work to be performed, and the Thread instance
identifies the worker that will perform the work.

2. Subclass Thread and override the run() method. This is
usually inconvenient in practice because of Java’s
single-inheritance constraint.

18

COMP 322, Spring 2012 (V.Sarkar)

start() and join() methods
• A Thread instance starts executing when its start()

method is invoked
—start() can be invoked at most once per Thread instance
—As with async, the parent thread can immediately move to the

next statement after invoking t.start()

• A t.join() call forces the invoking thread to wait till
thread t completes.
—Lower-level primitive than finish since it only waits for a single

thread rather than a collection of threads
—No restriction on which thread performs a join on which thread,

so it is possible to create a deadlock cycle using join()
—No notion of an Immediately Enclosing Finish in Java threads
—No propagation of exceptions to parent/ancestor threads

19

COMP 322, Spring 2012 (V.Sarkar)

Two-way Parallel ArraySum using Java
threads

20

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #24:
Liveness Guarantees

 /** Atomically adds delta to the current value.
1. *
2. * @param delta the value to add
3. * @return the previous value
4. */
5. public final int getAndAdd(int delta) {
6. for (;;) {
7. int current = get();
8. int next = current + delta;
9. if (compareAndSet(current, next))
10. // commit
11. return current;
12. }
13. }
Assume that multiple tasks call getAndAdd() repeatedly in parallel. Can this
implementation of getAndAdd() lead to a) deadlock, b) livelock, c) starvation,
or d) unbounded wait? Write and explain your answer below

21

Name 1: ___________________ Name 2: ___________________

