COMP 322: Fundamentals of Parallel Programming

Lecture 3: Computation Graphs, Abstract Performance Metrics

Vivek Sarkar

Department of Computer Science, Rice University

<u>vsarkar@rice.edu</u>

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Announcements

- Coursera forum on HJ Environment and Setup Issues
 - Please post your issues, and also respond to postings by other students when you can help
- Instructor's office hours are during 2pm 3pm on MWF
 - Please stop by if you have problems with any of the following
 - Accessing the Module 1 handout
 - Using the turnin script
 - You did not receive any email sent to comp322-all
- Homework 1 has been posted
 - Contains written and programming components
 - Due by 5pm on Wednesday, Jan 23rd
 - Must be submitted using "turnin" script introduced in Lab 1
 - In case of problems, email a zip file to comp322-staff at mailman.rice.edu before the deadline
 - See course web site for penalties for late submissions

Complexity Measures for Computation Graphs (Recap)

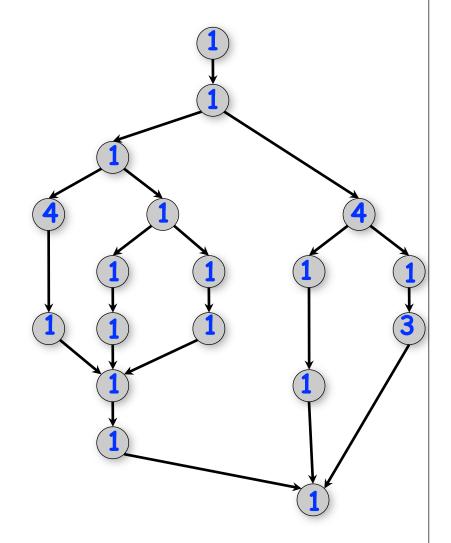
Define

- TIME(N) = execution time of node N
- WORK(G) = sum of TIME(N), for all nodes N in CG G
 - -WORK(G) is the total work to be performed in G
- CPL(G) = length of a longest path in CG G, when adding up execution times of all nodes in the path
 - —Such paths are called critical paths
 - —CPL(G) is the length of these paths (critical path length)
 - -CPL(G) is also the smallest possible execution time for the computation graph

Ideal Parallelism (Recap)

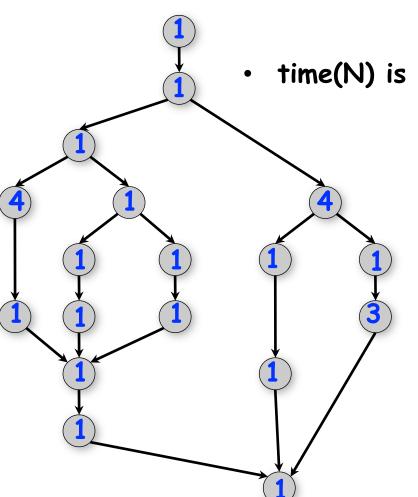
Define ideal parallelism of Computation Graph G as the ratio, WORK(G)/CPL(G)

Ideal Parallelism is independent of the number of processors that the program executes on, and only depends on the computation graph



Solution to Worksheet #2: what is the critical path length and ideal parallelism of this graph?

CPL(G) = length of a longest path in computation graph G



time(N) is labeled for all nodes N in the graph

$$WORK(G) = 26$$

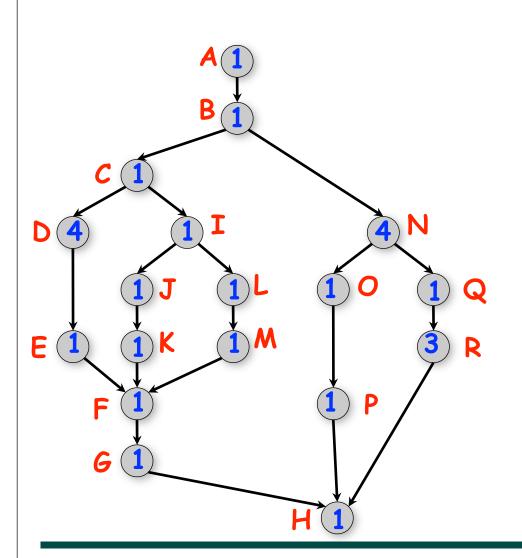
$$CPL(G) = 11$$

Ideal Parallelism

= WORK(G)/CPL(G)

= 26 / 11 ~ 2.36

Scheduling of a Computation Graph on a fixed number of processors: Example



Start time	Proc 1	Proc 2	Proc 3
0	A		
1	В		
2	C	N	
3	D	N	I
4	٥	N	J
5	٥	N	K
6	٥	Q	L
7	E	R	M
8	F	R	0
9	G	R	Р
10	Н		
11			

Scheduling of a Computation Graph on a fixed number of processors, P

- Assume that node N takes TIME(N) regardless of which processor it executes on, and that there is no overhead for creating parallel tasks
- A schedule specifies the following for each node

```
-START(N) = start time
```

-PROC(N) = index of processor in range 1...P

such that

- -START(i) + TIME(i) <= START(j), for all CG edges from i to j (Precedence constraint)
- A node occupies consecutive time slots in a processor (Nonpreemption constraint)
- —All nodes assigned to the same processor occupy distinct time slots (Resource constraint)

Lower Bounds on Execution Time of Schedules

- Let T_P = execution time of a schedule for computation graph G on P processors
 - -Can be different for different schedules
- · Lower bounds for all greedy schedules
 - —Capacity bound: $T_P \ge WORK(G)/P$
 - —Critical path bound: $T_p \ge CPL(G)$
- Putting them together

```
-T_p \ge \max(WORK(G)/P, CPL(G))
```


Greedy Schedule

- A greedy schedule is one that never forces a processor to be idle when one or more nodes are ready for execution
- A node is ready for execution if all its predecessors have been executed
- Observations

```
-T_1 = WORK(G), for all greedy schedules
```

$$-T_{\infty} = CPL(G)$$
, for all greedy schedules

Upper Bound on Execution Time of Greedy Schedules

Theorem [Graham '66]. Any greedy scheduler achieves $T_{P} \leq WORK(G)/P + CPL(G)$

Proof sketch:

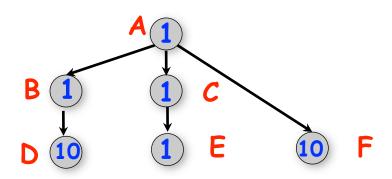
Define a time step to be complete if > P nodes are ready at that time, or incomplete otherwise

complete time steps ≤ WORK(G)/P

incomplete time steps \leq CPL(G)

Start time	Proc 1	Proc 2	Proc 3
0	A		
1	В		
2	C	N	
3	D	N	I
4	D	N	J
5	D	N	K
6	D	Q	L
7	E	R	M
8	F	R	0
9	G	R	P
10	Н		
11			

What are the best-case and worst-case schedules that we can obtain for this example on 2 processors?



- \cdot WORK(G) = 24
- \cdot CPL(G) = 12
- •For P=2, WORK(G)/P = 12
- •Lower bound = max(12,12) = 12
- •Upper bound = 12 + 12 = 24
- ·Best (13) and worst (14) values

for T_2 are in the range, 12 ... 24

Best case, $T_2 = 13$ Worst case, $T_2 = 14$

Start time	Proc 1	Proc 2
0	A	
1	В	F
2	D	F
3	D	F
4	D	F
5	D	F
6	D	F
7	D	F
8	D	F
9	D	F
10	D	F
11	D	С
12		Е
13		

Start time	Proc 1	Proc 2	
0	A		
1	F	В	
2	F	C	
3	F	Е	
4	F	D	
5	F	D	
6	F	D	
7	F	D	
8	F	D	
9	F	D	
10	F	D	
11		D	
12		D	
13		D	
14			

Bounding the performance of Greedy Schedulers

Combine lower and upper bounds to get

 $max(WORK(G)/P, CPL(G)) \le T_P \le WORK(G)/P + CPL(G)$

Corollary 1: Any greedy scheduler achieves execution time T_p that is within a factor of 2 of the optimal time (since max(a,b) and (a+b) are within a factor of 2 of each other, for any $a \ge 0$, $b \ge 0$).

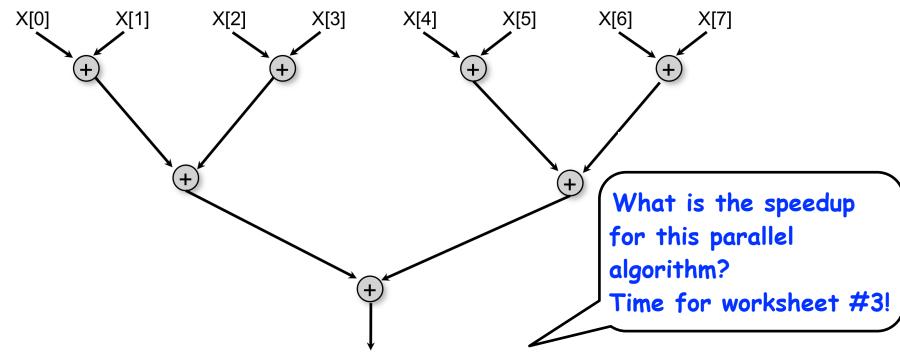
Corollary 2: Lower and upper bounds approach the same value whenever

- There's lots of parallelism, WORK(G)/CPL(G) >> P
- Or there's little parallelism, WORK(G)/CPL(G) << P

Strong Scaling and Speedup

- Define Speedup(P) = T₁ / T_P
 - —Factor by which the use of P processors speeds up execution time relative to 1 processor, for a fixed input size
 - —For ideal executions without overhead, 1 <=
 Speedup(P) <= P</pre>
 - -Linear speedup
 - When Speedup(P) = k*P, for some constant k,
 0 < k < 1
- Referred to as "strong scaling" because input size is fixed

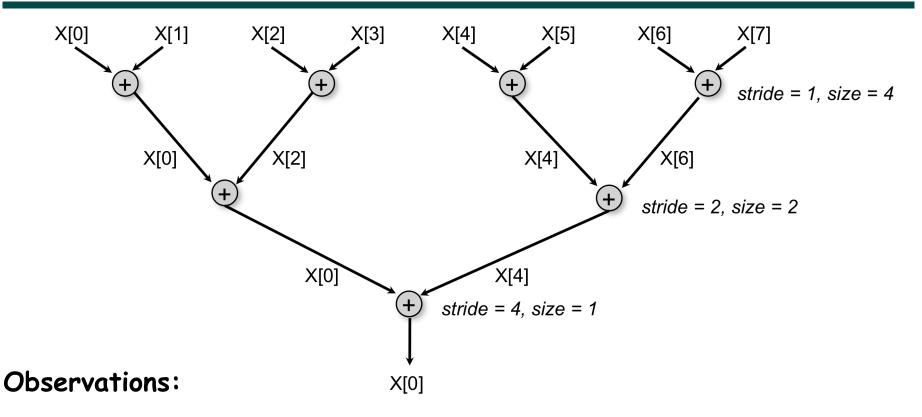
Reduction Tree Schema for computing Array Sum in parallel



Assume input array size = 5, and each add takes 1 unit of time:

- WORK(G) = S-1
- CPL(G) = log2(S)
- Assume $T_p = WORK(G)/P + CPL(G) = (S-1)/P + log2(S)$
 - Within a factor of 2 of any schedule's execution time

Algorithm based on updates to array



- This algorithm overwrites X (make a copy if X is needed later)
- stride = distance between array subscript inputs for each addition
- size = number of additions that can be executed in parallel in each level (stage)

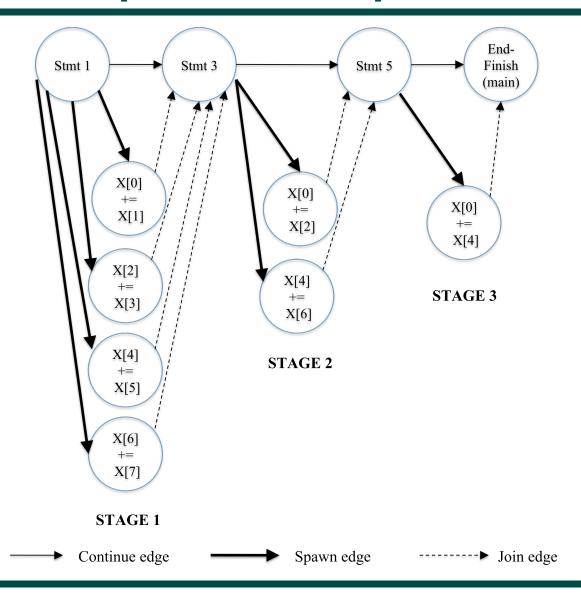
Async-Finish Parallel Program for Array Sum (for X.length = 8)

```
1.finish { //STAGE 1: stride = 1, size = 4 parallel additions
2.
   async X[0] += X[1]; async X[2] += X[3];
   async X[4] += X[5]; async X[6] += X[7];
3.
4.}
5.finish { //STAGE 2: stride = 2, size = 2 parallel additions
   async X[0]+=X[2]; async X[4]+=X[6];
7.}
8.finish { //STAGE 3: stride = 4, size = 1 parallel additions
9. async X[0] += X[4];
10.}
11.// Final sum is now in X[0]
```


Generalization to arbitrary sized arrays (ArraySum1)

```
1.for ( int stride = 1; stride < X.length ; stride *= 2 ) {
    // Compute size = number of adds to be performed in stride
   int size=ceilDiv(X.length, 2*stride);
    finish for(int i = 0; i < size; i++)</pre>
5.
      async {
        if ((2*i+1)*stride < X.length)
          X[2*i*stride] += X[(2*i+1)*stride];
  } // finish-for-async
9.} // for
10.
11.// Divide x by y, and round up to next largest int
12.static int ceilDiv(int x, int y) { return (x+y-1) / y; }
```


Computation Graph for ArraySum1



HJ Abstract Performance Metrics

- Basic Idea
 - -Count operations of interest, as in big-O analysis
 - -Abstraction ignores overheads that occur on real systems
- Calls to perf.doWork()
 - —Programmer inserts calls of the form, perf.doWork(N), within a step to indicate abstraction execution of N application-specific abstract operations
 - e.g., adds, compares, stencil ops, data structure ops
 - -Multiple calls add to the execution time of the step
- Enabled by selecting "Show Abstract Execution Metrics" in DrHJ compiler options (or -perf=true runtime option)
 - —If an HJ program is executed with this option, abstract metrics are printed at end of program execution with WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G)

Inserting call to perf.doWork() in ArraySum1

```
1.for ( int stride = 1; stride < X.length ; stride *= 2 ) {
    // Compute size = number of adds to be performed in stride
    int size=ceilDiv(X.length, 2*stride);
    finish for(int i = 0; i < size; i++)</pre>
5.
      async {
        if ( (2*i+1)*stride < X.length ) {
6.
         perf.doWork(1);
7.
8.
          X[2*i*stride] += X[(2*i+1)*stride];
9.
10. } // finish-for-async
11.} // for
12.
```


Worksheet #3: Strong Scaling for Array Sum

Name 1: ______ Name 2: _____

- Assume $T(S,P) \sim WORK(G,S)/P + CPL(G,S) = (S-1)/P + log2(S)$ for a parallel array sum computation
- Strong scaling
 - -Assume S = 1024 ==> log2(S) = 10
 - -Compute Speedup(P) for 10, 100, 1000 processors
 - T(P) = 1023/P + 10
 - Speedup(10) = T(1)/T(10) =
 - Speedup(100) = T(1)/T(100) =
 - Speedup(1000) = T(1)/T(1000) =
 - —Why is it worse than linear?

Outline of Today's Lecture

- Computation Graphs (contd)
- Parallel Speedup, Strong Scaling
- Abstract Performance Metrics

- Acknowledgments
 - —Cilk lectures, http://supertech.csail.mit.edu/cilk/
 - -COMP 322 Module 1 handout, Sections 3.1, 3.2, 3.3
 - https://svn.rice.edu/r/comp322/course/ module1-2013-01-06.pdf

