
COMP 322: Fundamentals of
Parallel Programming

Lecture 30: Task Affinity with Places

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 30 1 April 2013

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #29: Characterizing Solutions to
the Dining Philosophers Problem

For the five solutions studied in Lecture #29, indicate in the table below
which of the following conditions are possible and why:

1. Deadlock: when all philosopher tasks are blocked
2. Livelock: when all philosopher tasks are executing (i.e., no philosopher is

blocked) but ALL philosophers are starved (never get to eat)
3. Starvation: when one or more philosophers are starved (never get to eat)
4. Non-Concurrency: when more than one philosopher cannot eat at the same

time, even when resources are available i.e., not being used

NOTE: Deadlock implies Starvation, and Livelock implies Starvation

2

3

Deadlock Livelock Starvation Non-
concurrency

Solution 1:
synchronized

Yes No Yes Yes

Solution 2:
tryLock/
unLock

No Yes Yes Yes

Solution 3:
isolated

No No Yes Yes

Solution 4:
object-based
isolation

No No Yes No

Solution 5:
semaphores

No No No No

COMP 322, Spring 2013 (V. Sarkar)

An example Memory Hierarchy --- what is
the cost of a Memory Access?

Registers

L1	
 cache
	
 (Sta0c	
 RAM)

Main	
 memory
(Dynamic	
 RAM)

Local	
 secondary	
 storage
(local	
 disks)

Larger,	
 	

slower,	

cheaper	

per	
 byte

Remote	
 secondary	
 storage
(tapes,	
 distributed	
 file	
 systems,	
 Web	
 servers)

Local	
 disks	
 hold	
 files	

retrieved	
 from	
 disks	
 on	

remote	
 network	
 servers

Main	
 memory	
 holds	
 disk	
 blocks	

retrieved	
 from	
 local	
 disks

L2	
 cache
(Sta0c	
 RAM)

L1	
 cache	
 holds	
 cache	
 lines	
 retrieved	

from	
 L2	
 cache

CPU	
 registers	
 hold	
 words	
 retrieved	

from	
 L1	
 cache

L2	
 cache	
 holds	
 cache	
 lines	

retrieved	
 from	
 main	
 memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per	
 byte

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx4

COMP 322, Spring 2013 (V. Sarkar)

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 8,000 880 100 30 1 0.1 0.06 130,000
access (ns) 375 200 100 70 60 50 40 9
typical size (MB) 0.064 0.256 4 16 64 2,000 8,000 125,000

Storage Trends

DRAM

SRAM

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 500 100 8 0.30 0.01 0.005 0.0003 1,600,000
access (ms) 87 75 28 10 8 4 3 29
typical size (MB) 1 10 160 1,000 20,000 160,000 1,500,000 1,500,000

Disk

Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB 19,200 2,900 320 256 100 75 60 320
access (ns) 300 150 35 15 3 2 1.5 200

5 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2013 (V. Sarkar)

Cache Memories
• Cache memories are small, fast SRAM-based memories managed

automatically in hardware.
—Hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3), then in
main memory.

• Typical system structure:

6 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2013 (V. Sarkar)

Examples of Caching in the Hierarchy

Ultimate goal: create a large pool of storage with average cost
per byte that approaches that of the cheap storage near the
bottom of the hierarchy, and average latency that approaches
that of fast storage near the top of the hierarchy.

7 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

Ideally one would desire an indefinitely large memory
capacity such that any particular … word would be immediately

available. … We are … forced to recognize the possibility of constructing a
hierarchy of memories, each of which has greater capacity than the preceding
but which is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von Neumann
Preliminary Discussion of the Logical Design of an

Electronic Computing Instrument (1946)

COMP 322, Spring 2013 (V. Sarkar)

Locality
• Principle of Locality:

—Empirical observation: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

• Temporal locality:
—Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
—Items with nearby addresses tend

to be referenced close together in time
—A Java programmer can only influence spatial locality at the intra-object

level
– The garbage collector and memory management system determines

inter-object placement

8 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2013 (V. Sarkar)

Locality Example

• Data references
—Reference array elements in succession

(stride-1 reference pattern).
—Reference variable sum each iteration.

• Instruction references
—Reference instructions in sequence.
—Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spa0al	
 locality

Temporal	
 locality

Spa0al	
 locality
Temporal	
 locality

9 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

COMP 322, Spring 2013 (V. Sarkar)

Memory Hierarchy in a Multicore
Processor

• Memory hierarchy for a single Intel Xeon Quad-core E5440
HarperTown processor chip
—A SUG@R node contains TWO such chips, for a total of 8 cores

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core A

L3 unified cache

Main memory

Regs

L1
d-cache

Core B

L1
i-cache

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core C

Regs

L1
d-cache

Core D

L1
i-cache

10

Core-pair

COMP 322, Spring 2013 (V. Sarkar)

Programmer Control of Task Assignment to
Processors

• The parallel programming constructs that we’ve
studied thus far result in tasks that are assigned to
processors dynamically by the HJ runtime system
—Programmer does not worry about task assignment details

• Sometimes, programmer control of task assignment
can lead to significant performance advantages due to
improved locality

• Motivation for HJ “places”
—Provide the programmer a mechanism to map each task to a

set of processors when the task is created

11

COMP 322, Spring 2013 (V. Sarkar)

Places in HJ

HJ Places

Java Worker Threads

HJ programmer defines mapping from
HJ tasks to set of places

HJ Tasks

HJ runtime defines mapping from places to
one or more worker Java threads per place

The option “-places p:w” when executing an
HJ program can be used to specify
 p, the number of places
 w, the number of worker threads per place

OS threads

Processor Cores

12

COMP 322, Spring 2013 (V. Sarkar)

Example of –places 4:2 option on an 8-core
node (4 places w/ 2 workers per place)

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

13

Place 0 Place 1

Place 2

Place 1Place 1

Place 3

COMP 322, Spring 2013 (V. Sarkar)

Places in HJ
here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) = place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id returns the id of the place as an int

async at(P) S
• Creates new task to execute statement S at place P

• async S is equivalent to async at(here) S

• Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child task is
executing, not the place where the parent task is executing

14

COMP 322, Spring 2013 (V. Sarkar)

Example of –places 4:2 option on an 8-core
node (4 places w/ 2 workers per place)

Place 1

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

Place 0 Place 1

Place 2 Place 3

// Main program starts at place 0
async at(place.factory.place(0)) S1;
async at(place.factory.place(0)) S2;

async at(place.factory.place(1)) S3;
async at(place.factory.place(1)) S4;
async at(place.factory.place(1)) S5;

async at(place.factory.place(2)) S6;
async at(place.factory.place(2)) S7;
async at(place.factory.place(2)) S8;

async at(place.factory.place(3)) S9;
async at(place.factory.place(3)) S10;

15

COMP 322, Spring 2013 (V. Sarkar)

Example of –places 1:8 option
(1 place w/ 8 workers per place)

16

Regs

L1 L1

L2 unified cache

Core A

Regs

L1

Core B

L1

Regs

L1 L1

L2 unified cache

Core C

Regs

L1

Core D

L1

Regs

L1 L1

L2 unified cache

Core E

Regs

L1

Core F

L1

Regs

L1 L1

L2 unified cache

Core G

Regs

L1

Core H

L1

Place 0

All async’s run at place 0 when there’s only one place!

COMP 322, Spring 2013 (V. Sarkar)

Example HJ program with places

17

COMP 322, Spring 2013 (V. Sarkar)

Distributions --- hj.lang.dist
• A distribution maps points in a rectangular index space (region) to

places e.g.,
— i à place.factory.place(i % place.MAX_PLACES)

• Programmers are free to create any data structure they choose to
store and compute these mappings

• For convenience, the HJ language provides a predefined type,
hj.lang.dist, to simplify working with distributions

• Some public members available in an instance d of hj.lang.dist
are:
—d.rank = number of dimensions in the input region for distribution d
—d.get(p) = place for point p mapped by distribution d. It is an error to

call d.get(p) if p.rank != d.rank.
—d.places() = set of places in the range of distribution d
—d.restrictToRegion(pl) = region of points mapped to place pl by

distribution d

18

COMP 322, Spring 2013 (V. Sarkar)

Block Distribution
• dist.factory.block([lo:hi]) creates a block distribution over the one-

dimensional region, lo:hi.
• A block distribution splits the region into contiguous subregions,

one per place, while trying to keep the subregions as close to
equal in size as possible.

• Block distributions can improve the performance of parallel loops
that exhibit spatial locality across contiguous iterations.

• Example in Table 1: dist.factory.block([0:15]) for 4 places

19

COMP 322, Spring 2013 (V. Sarkar)

Block Distribution (contd)
• If the input region is multidimensional, then a block distribution is

computed over the linearized one-dimensional version of the
multidimensional region

• Example in Table 2: dist.factory.block([0:7,0:1]) for 4 places

20

COMP 322, Spring 2013 (V. Sarkar)

Distributed Parallel Loops
• Listing 2 shows the typical pattern used to iterate over an input

region r, while creating one async task for each iteration p at the
place dictated by distribution d i.e., at place d.get(p).

• This pattern works correctly regardless of the rank and contents
of input region r and input distribution d i.e., it is not constrained
to block distributions

21

COMP 322, Spring 2013 (V. Sarkar)

Cyclic Distribution
• dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the one-

dimensional region, lo:hi.
• A cyclic distribution “cycles” through places 0 … place.MAX

PLACES − 1 when spanning the input region

• Cyclic distributions can improve the performance of parallel loops
that exhibit load imbalance

• Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

• Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places

22

COMP 322, Spring 2013 (V. Sarkar)

Chunked Fork-Join Iterative
Averaging Example with Places

1. public void runDistChunkedForkJoin(int iterations,
2. int numChunks, dist d) {
3. for (int iter = 0; iter < iterations; iter++) {
4. finish for (point [jj] : [0:numChunks-1])
5. async at(d.get(jj)) {
6. for (point [j] : getChunk([1:n],numChunks,jj))
7. myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0;
8. } // finish-for-async
9. double[] temp = myNew; myNew = myVal; myVal = temp;
10. } // for iter
11. } // runDistChunkedForkJoin

•Chunk jj is always executed in the same place for each iter
•Method runDistChunkedForkJoin can be called with different values
of distribution parameter d

23

Let’s try another example of a distributed parallel loop in Worksheet 30!

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #30: impact of distribution on parallel
completion time

1. public void sampleKernel(int iterations,
2. int numChunks, dist d) {
3. for (int iter = 0; iter < iterations; iter++) {
4. finish for (point [jj] : [0:numChunks-1])
5. async at(d.get(jj)) {
6. perf.doWork(jj);
7. // Assume that time to process chunk jj = jj units
8. } // finish-for-async
9. double[] temp = myNew; myNew = myVal; myVal = temp;
10. } // for iter
11. } // sample kernel

•Assume an execution with n places using the option, -places n:1
•Will a block or cyclic distribution for d have a smaller abstract completion
time, assuming that all tasks on the same place are serialized?

24

Name 1: ___________________ Name 2: ___________________

COMP 322, Spring 2013 (V. Sarkar)

BACKUP SLIDES START HERE

25

