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Worksheet #29: Characterizing Solutions to 
the Dining Philosophers Problem 

For the five solutions studied in Lecture #29, indicate in the table below 
which of the following conditions are possible and why:

1. Deadlock: when all philosopher tasks are blocked
2. Livelock: when all philosopher tasks are executing (i.e., no philosopher is 

blocked) but ALL philosophers are starved (never get to eat)
3. Starvation: when one or more philosophers are starved (never get to eat)
4. Non-Concurrency: when more than one philosopher cannot eat at the same 

time, even when resources are available i.e., not being used

NOTE: Deadlock implies Starvation, and Livelock implies Starvation
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Deadlock Livelock Starvation Non-
concurrency

Solution 1:
synchronized

Yes No Yes Yes

Solution 2: 
tryLock/
unLock

No Yes Yes Yes

Solution 3:
isolated

No No Yes Yes

Solution 4:
object-based 
isolation

No No Yes No

Solution 5:
semaphores

No No No No
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An example Memory Hierarchy --- what is 
the cost of a Memory Access? 
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Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx4
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Metric  1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB  8,000 880 100 30 1 0.1 0.06 130,000
access (ns)  375 200 100 70 60 50 40 9
typical size (MB)  0.064 0.256 4 16 64 2,000 8,000 125,000 

Storage Trends

DRAM

SRAM

Metric  1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB  500 100 8 0.30 0.01 0.005 0.0003 1,600,000
access (ms) 87 75 28 10 8 4 3 29
typical size (MB)  1 10 160 1,000 20,000 160,000 1,500,000 1,500,000

Disk

Metric  1980 1985 1990 1995 2000 2005 2010 2010:1980

$/MB  19,200 2,900 320 256 100 75 60 320
access (ns)  300 150 35 15 3 2 1.5 200

5 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Cache Memories
• Cache memories are small, fast SRAM-based memories managed 

automatically in hardware. 
—Hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3), then in 
main memory.

• Typical system structure:

6 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Examples of Caching in the Hierarchy

Ultimate goal: create a large pool of storage with average cost 
per byte that approaches that of the cheap storage near the 
bottom of the hierarchy, and average latency that approaches 
that of  fast storage near the top of the hierarchy.

7 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx

Ideally one would desire an indefinitely large memory 
capacity such that any particular … word would be immediately 

available. … We are … forced to recognize the possibility of constructing a 
hierarchy of memories, each of which has greater capacity than the preceding 
but which is less quickly accessible. 

A. W. Burks, H. H. Goldstine, and J. von Neumann 
Preliminary Discussion of the Logical Design of an 

Electronic Computing Instrument (1946)
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Locality
• Principle of Locality: 

—Empirical observation: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently

• Temporal locality:  
—Recently referenced items are likely 

to be referenced again in the near future

• Spatial locality:  
—Items with nearby addresses tend 

to be referenced close together in time
—A Java programmer can only influence spatial locality at the intra-object 

level
– The garbage collector and memory management system determines 

inter-object placement

8 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Locality Example

• Data references
—Reference array elements in succession 

(stride-1 reference pattern).
—Reference variable sum each iteration.

• Instruction references
—Reference instructions in sequence.
—Cycle through loop repeatedly. 

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spa0al	
  locality

Temporal	
  locality

Spa0al	
  locality
Temporal	
  locality

9 Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx
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Memory Hierarchy in a Multicore 
Processor

• Memory hierarchy for a single Intel Xeon Quad-core E5440 
HarperTown processor chip
—A SUG@R node contains TWO such chips, for a total of 8 cores
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Programmer Control of Task Assignment to 
Processors

• The parallel programming constructs that we’ve 
studied thus far result in tasks that are assigned to 
processors dynamically by the HJ runtime system
—Programmer does not worry about task assignment details

• Sometimes, programmer control of task assignment 
can lead to significant performance advantages due to 
improved locality

• Motivation for HJ “places”
—Provide the programmer a mechanism to map each task to a 

set of processors when the task is created
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Places in HJ

HJ Places

Java Worker Threads

HJ programmer defines mapping from 
HJ tasks to set of places

HJ Tasks

HJ runtime defines mapping from places to 
one or more worker Java threads per place 

The option “-places p:w” when executing an 
HJ program can be used to specify
 p, the number of places
 w, the number of worker threads per place

OS threads

Processor Cores
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Example of –places 4:2 option on an 8-core 
node (4 places w/ 2 workers per place)

Regs

L1 L1 

L2 unified cache

Core A

Regs

L1 

Core B

L1 

Regs

L1 L1 

L2 unified cache

Core C

Regs

L1 

Core D

L1 

Regs

L1 L1 

L2 unified cache

Core E

Regs

L1 

Core F

L1 

Regs

L1 L1 

L2 unified cache

Core G

Regs

L1 

Core H

L1 
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Places in HJ
here = place at which current task is executing

place.MAX_PLACES = total number of places (runtime constant)
Specified by value of p in runtime option, -places p:w

place.factory.place(i) =  place corresponding to index i

<place-expr>.toString() returns a string of the form “place(id=0)”

<place-expr>.id returns the id of the place as an int

async at(P) S
• Creates new task to execute statement S at place P

• async S is equivalent to async at(here) S

• Main program task starts at place.factory.place(0)

Note that here in a child task refers to the place P at which the child task is 
executing, not the place where the parent task is executing
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Example of –places 4:2 option on an 8-core 
node (4 places w/ 2 workers per place)
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// Main program starts at place 0
async at(place.factory.place(0)) S1; 
async at(place.factory.place(0)) S2;

async at(place.factory.place(1)) S3; 
async at(place.factory.place(1)) S4;
async at(place.factory.place(1)) S5;

async at(place.factory.place(2)) S6;
async at(place.factory.place(2)) S7;
async at(place.factory.place(2)) S8;

async at(place.factory.place(3)) S9;
async at(place.factory.place(3)) S10;
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Example of –places 1:8 option
(1 place w/ 8 workers per place)
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All async’s run at place 0 when there’s only one place!
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Example HJ program with places
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Distributions --- hj.lang.dist
• A distribution maps points in a rectangular index space (region) to 

places e.g.,
—  i à place.factory.place(i % place.MAX_PLACES)

• Programmers are free to create any data structure they choose to 
store and compute these mappings

• For convenience, the HJ language provides a predefined type, 
hj.lang.dist, to simplify working with distributions

• Some public members available in an instance d of hj.lang.dist 
are:
—d.rank = number of dimensions in the input region for distribution d
—d.get(p) = place for point p mapped by distribution d. It is an error to 

call d.get(p) if p.rank != d.rank.
—d.places() = set of places in the range of distribution d
—d.restrictToRegion(pl) = region of points mapped to place pl by 

distribution d

18
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Block Distribution
• dist.factory.block([lo:hi]) creates a block distribution over the one-

dimensional region, lo:hi.
• A block distribution splits the region into contiguous subregions, 

one per place, while trying to keep the subregions as close to 
equal in size as possible. 

• Block distributions can improve the performance of parallel loops 
that exhibit spatial locality across contiguous iterations.

• Example in Table 1: dist.factory.block([0:15]) for 4 places
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Block Distribution (contd)
• If the input region is multidimensional, then a block distribution is 

computed over the linearized one-dimensional version of the 
multidimensional region

• Example in Table 2: dist.factory.block([0:7,0:1]) for 4 places
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Distributed Parallel Loops
• Listing 2 shows the typical pattern used to iterate over an input 

region r, while creating one async task for each iteration p at the 
place dictated by distribution d i.e., at place d.get(p). 

• This pattern works correctly regardless of the rank and contents 
of input region r and input distribution d i.e., it is not constrained 
to block distributions
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Cyclic Distribution
• dist.factory.cyclic([lo:hi]) creates a cyclic distribution over the one-

dimensional region, lo:hi. 
• A cyclic distribution “cycles” through places 0 … place.MAX 

PLACES − 1 when spanning the input region

• Cyclic distributions can improve the performance of parallel loops 
that exhibit load imbalance

• Example in Table 3: dist.factory.cyclic([0:15]) for 4 places

• Example in Table 4: dist.factory.cyclic([0:7,0:1]) for 4 places
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Chunked Fork-Join Iterative 
Averaging Example with Places

1.  public void runDistChunkedForkJoin(int iterations, 
2.                                     int numChunks, dist d) {
3.    for (int iter = 0; iter < iterations; iter++) {
4.      finish for (point [jj] : [0:numChunks-1]) 
5.        async at(d.get(jj)) {
6.          for (point [j] : getChunk([1:n],numChunks,jj))
7.            myNew[j] = (myVal[j-1] + myVal[j+1]) / 2.0; 
8.      } // finish-for-async
9.      double[] temp = myNew; myNew = myVal; myVal = temp; 
10.   } // for iter
11. } // runDistChunkedForkJoin

•Chunk jj is always executed in the same place for each iter
•Method runDistChunkedForkJoin can be called with different values 
of distribution parameter d

23

Let’s try another example of a distributed parallel loop in Worksheet 30!
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Worksheet #30: impact of distribution on parallel 
completion time

1.  public void sampleKernel(int iterations, 
2.                           int numChunks, dist d) {
3.    for (int iter = 0; iter < iterations; iter++) {
4.      finish for (point [jj] : [0:numChunks-1]) 
5.        async at(d.get(jj)) {
6.          perf.doWork(jj);
7.          // Assume that time to process chunk jj = jj units 
8.      } // finish-for-async
9.      double[] temp = myNew; myNew = myVal; myVal = temp; 
10.   } // for iter
11. } // sample kernel

•Assume an execution with n places using the option, -places n:1
•Will a block or cyclic distribution for d have a smaller abstract completion 
time, assuming that all tasks on the same place are serialized?

24

Name 1: ___________________          Name 2: ___________________
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BACKUP SLIDES START HERE
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