
COMP 322: Fundamentals of
Parallel Programming

Lecture 33: Message Passing Interface (contd)

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 33 8 April 2013

COMP 322, Spring 2013 (V. Sarkar)

Acknowledgments for Today’s Lecture
• “Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder

—Includes resources available at http://www.pearsonhighered.com/educator/
academic/product/0,3110,0321487907,00.html

• “Parallel Architectures”, Calvin Lin
—Lectures 5 & 6, CS380P, Spring 2009, UT Austin
—http://www.cs.utexas.edu/users/lin/cs380p/schedule.html

• Slides accompanying Chapter 6 of “Introduction to Parallel Computing”,
2nd Edition, Ananth Grama, Anshul Gupta, George Karypis, and Vipin
Kumar, Addison-Wesley, 2003

— http://www-users.cs.umn.edu/~karypis/parbook/Lectures/AG/chap6_slides.pdf

• MPI slides from “High Performance Computing: Models, Methods and
Means”, Thomas Sterling, CSC 7600, Spring 2009, LSU

— http://www.cct.lsu.edu/csc7600/coursemat/index.html

• mpiJava home page: http://www.hpjava.org/mpiJava.html
• MPI lectures given at Rice HPC Summer Institute 2009, Tim Warburton,

May 2009

2

COMP 322, Spring 2013 (V. Sarkar)

Outline of today’s lecture

• Blocking communications (Recap)

• Non-blocking communications

• Collective communications

3

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #32: MPI send and receive
1. int a[], b[];
2. ...
3. if (MPI.COMM_WORLD.rank() == 0) {
4. MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
5. MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
6. }
7. else {
8. Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
9. Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
10. System.out.println(“a = “ + a + “ ; b = “ + b);
11.}
12. ...

Question: In the space below, indicate what values you expect the print
statement in line 10 to output (assuming the program is invoked with 2
processes).

Answer: Nothing! The program will deadlock due to mismatched tags, with
process 0 blocked at line 4, and process 1 blocked at line 8.

4

COMP 322, Spring 2013 (V. Sarkar)

Message Envelope
• Communication across process is

performed using messages.
• Each message consists of a fixed

number of fields that is used to
distinguish them, called the Message
Envelope :
—Envelope comprises source,

destination, tag, communicator
—Message comprises Envelope + data

• Communicator refers to the
namespace associated with the
group of related processes

MPI.COMM_WORLD

0

12

5

3

4

6

7

Source	
 :	
 process0
Des>na>on	
 :	
 process4
Tag	
 :	
 1234
Communicator	
 :	
 MPI.COMM_WORLD

5

COMP 322, Spring 2013 (V. Sarkar)

Communication Buffers
• Most of the communication operations take a sequence of

parameters like
 Object buf, int offset, int count, Datatype type

• In the actual arguments passed to these methods, buf must be an
array (or a run-time exception will occur).
—The reason declaring buf as an Object rather than an array was that one

would then need to overload with about 9 versions of most methods for
arrays, e.g.

 void Send(int [] buf, …)
 void Send(long [] buf, …)
 …
 and about 81 versions of operations that involve two buffers, possibly

of different type. Declaring Object buf allows any kind of array in one
signature.

• offset is the element in the buf array where message starts. count
is the number of items to send. type describes the type of these
items.

6

COMP 322, Spring 2013 (V. Sarkar)

Layout of Buffer
• If type is a basic datatype (corresponding to a Java type), the

message corresponds to a subset of the array buf, defined as
follows:

– In the case of a send buffer, the red boxes represent
elements of the buf array that are actually sent.

– In the case of a receive buffer, the red boxes represent
elements where the incoming data may be written (other
elements will be unaffected). In this case count defines the
maximum message size that can be accepted. Shorter
incoming messages are also acceptable.

off
se

t +
co

un
t -

1

0 1 off
se

t
off

se
t +

1

… … …

7

COMP 322, Spring 2013 (V. Sarkar)

Basic Datatypes
• mpiJava defines 9 basic datatypes: these correspond to the 8 primitive

types in the Java language, plus a basic datatype that stands for an
Object (or, more formally, a Java reference type).

• The basic datatypes are available as static fields of the MPI class. They
are:

ObjectMPI.OBJECT
doubleMPI.DOUBLE
floatMPI.FLOAT
longMPI.LONG
intMPI.INT
booleanMPI.BOOLEAN
shortMPI.SHORT
charMPI.CHAR
byteMPI.BYTE
Java typempiJava datatype

8

COMP 322, Spring 2013 (V. Sarkar)

Message Ordering in MPI

• FIFO ordering only guaranteed
for same source, destination,
data type, and tag

• (In HJ actors, FIFO ordering
was guaranteed for same
source and destination)

Source Destination

Source Destination
tag = 1

tag = 2
tag = 3

9

COMP 322, Spring 2013 (V. Sarkar)

Status values

• The recv() method returns an instance of the Status class.

• This object (referred to as “retval” below) provides access to
several useful pieces about the message that arrived:
—int field retval.source holds the rank of the process that sent the

message (particularly useful if the message was received with
MPI.ANY_SOURCE).

—int field retval.tag holds the message tag specified by the sender of
the message (particularly useful if the message was received with
MPI.ANY_TAG).

—int method retval.Get_count(type) returns number of items
received in the message.

—int method retval.Get_elements(type) returns number of basic
elements received in the message.

—int field retval.index is set by methods like Request.Waitany(),
described later.

10

COMP 322, Spring 2013 (V. Sarkar)11

Deadlock Scenario #1
Consider:

int a[], b[];
...
if (MPI.COMM_WORLD.rank() == 0) {
 MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
 MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
}
else {
 Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0, 2);
 Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0, 1);
}
...

Blocking semantics for Send() and Recv() can lead to a
deadlock.

COMP 322, Spring 2013 (V. Sarkar)12

Deadlock Scenario #2
Consider the following piece of code, in which process i sends a message to
process i + 1 (modulo the number of processes) and receives a message from

process i - 1 (modulo the number of processes)

int a[], b[];
. . .
int npes = MPI.COMM_WORLD.siz();
int myrank = MPI.COMM_WORLD.rank()
MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, (myrank+1)%npes, 1);
MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, (myrank-1+npes)%npes, 1);

Once again, we have a deadlock if Send() and Recv() are
blocking

COMP 322, Spring 2013 (V. Sarkar)13

Approach #1 to Deadlock Avoidance ---
Reorder Send and Recv calls

We can break the circular wait to avoid deadlocks as follows:

int a[], b[];
...
if (MPI.COMM_WORLD.rank() == 0) {
 MPI.COMM_WORLD.Send(a, 0, 10, MPI.INT, 1, 1);
 MPI.COMM_WORLD.Send(b, 0, 10, MPI.INT, 1, 2);
}
else {
 Status s1 = MPI.COMM_WORLD.Recv(a, 0, 10, MPI_INT, 0,
1);
 Status s2 = MPI.COMM_WORLD.Recv(b, 0, 10, MPI.INT, 0,
2);
}
...

COMP 322, Spring 2013 (V. Sarkar)14

Approach #2 to Deadlock Avoidance ---
a combined Sendrecv() call

• Since it is fairly common to want to simultaneously send one
message while receiving another (as illustrated in Scenario #2),
MPI provides a more specialized operation for this.

• In mpiJava, the Sendrecv() method has the following signature:

Status Sendrecv(Object sendBuf, int sendOffset, int sendCount,

 Datatype sendType, int dst, int sendTag,

 Object recvBuf, int recvOffset, int recvCount,

 Datatype recvType, int src, int recvTag) ;

—This can be more efficient than doing separate sends and receives,
and it can be used to avoid deadlock conditions in certain situations
– Analogous to phaser “next” operation, where programmer does

not have access to individual signal/wait operations
—There is also a variant called Sendrecv_replace() which only specifies

a single buffer: the original data is sent from this buffer, then
overwritten with incoming data.

COMP 322, Spring 2013 (V. Sarkar)15

Using Sendrecv for Deadlock Avoidance
in Scenario #2

Consider the following piece of code, in which process i sends a message to
process i + 1 (modulo the number of processes) and receives a message from

process i - 1 (modulo the number of processes)

int a[], b[];
. . .
int npes = MPI.COMM_WORLD.size();
int myrank = MPI.COMM_WORLD.rank()
MPI.COMM_WORLD.Sendrecv(a, 0, 10, MPI.INT, (myrank+1)%npes, 1,
 b, 0, 10, MPI.INT, (myrank-1+npes)%npes,
1);

...

A combined Sendrecv() call avoids deadlock in this case

COMP 322, Spring 2013 (V. Sarkar)

Sources of nondeterminism:
ANY_SOURCE and ANY_TAG

• A recv() operation can explicitly specify which process within
the communicator group it wants to accept a message from,
through the src parameter.

• It can also explicitly specify what message tag the message
should have been sent with, through the tag parameter.

• The recv() operation will block until a message meeting both
these criteria arrives.
—If other messages arrive at this node in the meantime, this call to

recv() ignores them (which may or may not cause the senders of
those other messages to wait, until they are accepted).

• If you want the recv() operation to accept a message from any
source, or with any tag, you may specify the values
MPI.ANY_SOURCE or MPI.ANY_TAG for the respective
arguments.

16

COMP 322, Spring 2013 (V. Sarkar)

Outline of today’s lecture

• Blocking communications (Recap)

• Non-blocking communications

• Collective communications

17

COMP 322, Spring 2012 (V.Sarkar)

Latency in Blocking vs. Nonblocking
Communication

Blocking
communication

Nonblocking
communication
(like an async
or future task)

18

COMP 322, Spring 2012 (V.Sarkar)19

Non-Blocking Send and Receive operations
• In order to overlap communication with computation, MPI provides a pair

of functions for performing non-blocking send and receive operations (“I”
stands for “Immediate”)

• The method signatures for Isend() and Irecv() are similar to those for
Send() and Recv(), except that Isend() and Irecv() return objects of type
Request:

Request Isend(Object buf, int offset, int count, Datatype type, int dst, int
tag) ;
Request Irecv(Object buf, int offset, int count, Datatype type, int src, int
tag) ;

• Function Test() tests whether or not the non-blocking send or receive
operation identified by its request has finished.
Status Test(Request request)

• Wait waits() for the operation to complete.
Status Wait(Request request)

COMP 322, Spring 2012 (V.Sarkar)

Simple Irecv() example
• The simplest way of waiting for completion of a single non-

blocking operation is to use the instance method Wait() in the
Request class, e.g:
// Post a receive operation
Request request = Irecv(intBuf, 0, n, MPI.INT,
 MPI.ANY_SOURCE, 0) ;

// Do some work while the receive is in progress
…

// Finished that work, now make sure the message has
arrived

Status status = request.Wait() ;

// Do something with data received in intBuf
…

• The Wait() operation is declared to return a Status object. In
the case of a non-blocking receive operation, this object has
the same interpretation as the Status object returned by a
blocking Recv() operation.

20

COMP 322, Spring 2012 (V.Sarkar)

Non-blocking Example
Example pseudo-code on process 0:

if(procid==0){

 Isend outgoing to 1
 Irecv incoming from 1

 .. compute ..

 Wait until Irecv has received incoming

 .. compute ..

 Wait until Isend does not need outgoing

}

Using the “non-blocked” send and receives allows us to overlap
the latency and buffering overheads with useful computation.

21

Example pseudo-code on process 1:

if(procid==1){

 Isend outgoing to 1
 Irecv incoming from 1

 .. compute ..

 Wait until Irecv has received incoming

 .. compute ..

 Wait until Isend does not need outgoing

}

COMP 322, Spring 2012 (V.Sarkar)

Non-blocking Code Snippets (C version)

22

COMP 322, Spring 2012 (V.Sarkar)

Waitall() vs. Waitany()

23

 public static Status[] Waitall (Request [] array_of_request)

• Waitall() blocks until all of the operations associated with the active
requests in the array have completed. Returns an array of statuses
for each of the requests.
— Waitall() is a like a finish scope for all requests in the array

 public static Status Waitany(Request [] array_of_request)

• Waitany() blocks until one of the operations associated with the
active requests in the array has completed.

COMP 322, Spring 2013 (V. Sarkar)

Outline of today’s lecture

• Blocking communications (Recap)

• Non-blocking communications

• Collective communications

24

COMP 322, Spring 2013 (V. Sarkar)25

Collective Communications
• A popular feature of MPI is its family of collective

communication operations.
• Each of these operations is defined over a communicator.

—All processes in a communicator must perform the same operation
—Implicit barrier (next)

• The simplest example is the broadcast operation: all processes
invoke the operation, all agreeing on one root process. Data is
broadcast from that root.

void Bcast(Object buf, int offset, int count, Datatype type, int root)
– Broadcast a message from the process with rank root to all

processes of the group.

COMP 322, Spring 2013 (V. Sarkar)26

MPI_Bcast

29 29

29

29

29

29

29

29

29

29

29

29

29

29

29

0

1

2

3pr
oc

4

5

6

7

A root
process sends
same message
to all

Simple tree broadcast

29 represents
an array of
values

COMP 322, Spring 2013 (V. Sarkar)27

More Examples of Collective Operations
void Barrier()

– Blocks the caller until all processes in the group have called it.

void Gather(Object sendbuf, int sendoffset, int sendcount,
Datatype sendtype, Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype, int root)

– Each process sends the contents of its send buffer to the root process.

void Scatter(Object sendbuf, int sendoffset, int sendcount,
Datatype sendtype, Object recvbuf, int recvoffset,
int recvcount, Datatype recvtype, int root)

– Inverse of the operation Gather.

void Reduce(Object sendbuf, int sendoffset, Object recvbuf,
int recvoffset, int count, Datatype datatype, Op op,
int root)

– Combine elements in send buffer of each process using the reduce
operation, and return the combined value in the receive buffer of the
root process.

COMP 322, Spring 2013 (V. Sarkar)28

MPI_Gather
• On occasion it is necessary to copy an array of data from each

process into a single array on a single process.
• Graphically:

• Note: only process 0 (P0) needs to supply storage for the output

1 3

4 -2

-1 4

1 3 4 -2 -1 4P0

P1

P2

COMP 322, Spring 2013 (V. Sarkar)

Worksheet #33: MPI Gather

1. MPI.Init(args) ;
2. int myrank = MPI.COMM_WORLD.Rank() ;
3. int numProcs = MPI.COMM_WORLD.Size() ;
4. int size = ...;
5. int[] sendbuf = new int[size];
6. int[] recvbuf = new int[???];
7. . . . // Each process initializes sendbuf
8. MPI.COMM_WORLD.Gather(sendbuf, 0, size, MPI.INT,
9. recvbuf, 0, size, MPI.INT,
10. 0/*root*/);
11. . . .
12. MPI.Finalize();
13.

In the space below, indicate what values should be provided instead of ???
in line 6, and why.

29

Name 1: ___________________ Name 2: ___________________

