COMP 322: Fundamentals of
Parallel Programming

Lecture 36: Partitioned Global Address Space
(PGAS) languages

John Mellor-Crummey
Department of Computer Science, Rice University

johnmc@rice.edu

COMP 322 Lecture 36 15 April 2013

Acknowledgments

* “Principles of Parallel Programming,” Calvin Lin &
Lawrence Snyder

* Includes resources available at http://

www.pearsonhighered.com/educator/academic/
product/0.3110.0321487907.00.html

e Tarek ElI-Ghazawi, Steven Seidel. High Performance
Parallel Programming with Unified Parallel C. SC05
Tutorial. http://upc.gwu.edu/tutorials/UPC-SCO05.pdf

Parallel Architectures

interconnect

OO0 OOl O

Shared Memory Distributed Memory

Programming Models

Habanero-Java MPI
Java Threads Map-Reduce
Cilk UPC
OpenMP Q Process/Thread CAF

Pthreads Memory

Performance Concerns for Distributed Memory

Data movement and
synchronization are expensive

To minimi h Interconnect
o minimize overheads —

e Co-locate data with processes Q Q Q

e Aggregate multiple accesses
to remote data

e Overlap communication with
computation

Distributed Memory
=» Significant programmability

challenges with addressing

these overheads in a shared-

nothing programming model

like MPI

Partitioned Global Address Space Languages

e Global address space
—one-sided communication (GET/PUT) simpler than msg passing

* Programmer has control over performance-critical factors
—data distribution and locality control |acking in thread-based models
—computation partitioning

T HJ places help with localit
—communication placement P P y

control but not data distribution
e Data movement and synchronization as language primitives

—amenable to compiler-based communication optimization

e Global view rather than local view

Global View Local View (8 processes) S

Partitioned Global Address Space Languages

¢ Unified Parallel C (extension of C)
e Coarray Fortran (extension of Fortran)

e Titanium (extension of early version of Java)

e Related efforts: newer languages developed since 2003 as
part of the DARPA High Productivity Computing Systems
(HPCS) program

—IBM: X10 (foundation for Habanero-Java)
—Cray: Chapel
—Oracle/Sun: Fortress

Data Distributions

In HJ, distributions are used to guide computation mappings for affinity

The idea of distributions was originally motivated by mapping data (array
elements) to processors

e.g., Unified Parallel C (UPC) language for distributed-memory parallel
machines (Thread = Place)

3 Thread 0 Thread 1 Thread
s o THREADS-1
@ 7 _
595 Shared
&0
O W Arivate 0 Private 1 Private
T O ee¢ THREADS-1
z 8 i
a

Like shared vs. private/local data in HJ, except now each datum also
has an “affinity” with a specific thread/place

Unified Parallel C (UPC)

An explicit parallel extension of ISO C
—a few extra keywords

shared, MYTHREAD, THREADS, upc_forall

Language features
—partitioned global address space for shared data

part of shared data co-located with each thread

—threads created at application launch

each bound to a CPU
each has some private data

—a memory model

defines semantics of interleaved accesses to shared data

—synchronization primitives

barriers
locks
load/store

UPC Execution Model

e Multiple threads working independently in a SPMD fashion

—MYTHREAD specifies thread index (0..THREADS-1)
— Like MPI processes and ranks
—# threads specified at compile-time or program launch

¢ Partitioned Global Address Space (different from MPI)

()
- § Thread 0 Thread 1 Thread
o) 7 THREADS-1
c 7))
S= 9
= Shared
52 5
a O o
(ORI .
iR Private | Private XX Private
> © 0 A THREADS-1
. O
o o

e Threads synchronize as necessary using using

—synchronization primitives
—shared variables

Shared and Private Data

e Static and dynamic memory allocation of each type of data

e Shared objects placed in memory based on affinity
—shared scalars have affinity to thread 0
— here, a scalar means a singleton instance of any type

—elements of shared arrays are allocated round robin among
memory modules co-located with each thread

A One-dimensional Shared Array

Consider the following data layout directive

shared int y[2 * THREADS + 1];

For THREADS = 3, we get the following cyclic layout

Thread O Thread 1 Thread 2

y[O] y[1] y[2]
y[4] y[9]

11

A Multi-dimensional Shared Array

shared int A[4] [THREADS];

For THREADS = 3, we get the following cyclic layout

Thread O Thread 1 Thread 2
Al0][0] AlO][1. AlO][2
A[1][0] A1 Al1][2
A[2][0] Al2][1 Al2][2
A[3][O0 A[3][1 A[3][2.

Shared and Private Data

Consider the following data layout directives

shared int x; // x has affinity to thread 0
shared int y[THREADS];

For THREADS = 3, we get the following layout

Thread 2

—

int z; // private
Thread 0 Thread 1
X
y[O] y[1]

Z

Z

y[2]

Z

13

Controlling the Layout of Shared Arrays

e Can specify a blocking factor for shared arrays to obtain
block-cyclic distributions

—default block size is 1 element = cyclic distribution

e Shared arrays are distributed on a block per thread basis,
round robin allocation of block size chunks

e Example layout using block size specifications

—e.g., shared int a[l6] :
: @\ ~___block size
Thread 0 Thread 1 Thread 2
| ao0 | | a2 | | a4 |

a[1] | a[3] | | a[5] |
a[6] a[8] a[10]

a[7] a[9] | a[11] I
a[12] a[14]

a[13] [&)

i

14

Blocking of Shared Arrays

e Block size and THREADS determine affinity
—with which thread will a datum be co-located

e Element i of a blocked array has affinity to thread:

{ ; Jmod THREADS
blocksize

15

Blocking Multi-dimensional Data |

e Manage the interaction between
—contiguous memory layout of C multi-dimensional arrays
—blocking factor for shared layout

e Consider layouts for different block sizes for
—shared [BLOCKSIZE] double grids[N][N];

N
N
Default Column Blocks Distribution by Row
BLOCKSIZE=1 BLOCKSIZE=N/THREADS BLOCKSIZE=N

16

Blocking Multi-dimensional Data Il

e Consider the data declaration
—shared [3] int A[4][THREADS];

e When THREADS = 4, this results in the following data layout

Thread 0

Thread 1

A[0][3]
A[1][0]

All][1]
A[3][3]

Thread 2

Al

T

>

N

I

3

A[2][0]

Thread 3

T
1
3

The mapping is not pretty for most blocking factors

A Simple UPC Program: Vector Addition

//vect add.c

#include <upc relaxed.h> Iteration #:
#define N 100*THREADS

shared int v1[N], v2[N], vlplusv2[N];

void main () {

int 1i;
for (1=0; i<N; 1i++)
if == i % THREADS)

viplusv2[i]=v1[i]+v2[i];

Thread 0 Thread 1

0
2

1
3

v1[0]

vi[1]

vi[2]

vi[3]

v2[0]

v2[1]

v2[2]

v2[3]

viplusv2[0]

viplusv2[1]

viplusv2[2]

viplusv2[3]

Each thread executes each

iteration to check if it has work

18

aoedg paleys

A More Efficient Vector Addition

//vect add.c Iteration #:

#include <upc relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], vlplusv2[N];

void main () {
int i;
for(i = ; 1 < N; i += THREADS)
vliplusv2[i]=v1[i]+Vv2][i];

0
2

1
3

Thread 0 Thread 1

v1[0]

vi[1]

vi[2]

vi[3]

v2[0]

v2[1]

v2[2]

v2[3]

viplusv2[0]

viplusv2[1]

viplusv2[2]

viplusv2[3]

Each thread executes only its own iterations

19

aoedg paleys

Worksharing with upc forall

e Distributes independent iterations across threads
e Simple C-like syntax and semantics
—upc_ forall(init; test; loop; affinity)

e Affinity is used to enable locality control
—usually, map iteration to thread where the iteration’s data resides

e Affinity can be

—an integer expression, or a
—reference to (address of) a shared object

20

Work Sharing + Affinity with upc forall

e Example 1: explicit affinity using shared references
shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; &a[i])
// Execute iteration i at a[i]’s thread/place
a[i] = b[i] * c[i];
e Example 2: implicit affinity with integer expressions
shared int a[100],b[100], ¢[100];
int i;
upc_forall (i=0; 1<100; i++; 1)
// Execute iteration i at place i%THREADS
a[i] = b[i] * c[i];

e Both yield a round-robin distribution of iterations
21

//vect add.c

#define N 100*THREADS
shared int v1[N], v2[N], vlplusv2[N]; vii2]

void main ()

{

Vector Addition Using

thread affinity for work: have
thread | execute iteration | Jthread 0 Thread 1

0
Iteration #: 2

1
3

v1[0]

vi[1]

vi[3]

v2[0]

v2[1]

v2[2]

v2[3]

int 1i;

upc forall(i = 0; i < N; i++;

viplusv2[0] | viplusv2[1]

vliplusv2[i]=v1[i]+Vv2][i]; viplusv2[2] | viplusv2[3]

Each thread executes subset of global iteration
space as directed by the affinity clause

22

aoedg paleys

Work Sharing + Affinity with upc forall

e Example 3: implicit affinity by chunks
shared int a[100],b[100], c[100];

inti;

upc_forall (i=0; i<100; i++; (i*THREADS)/100)

a[i] = b[i] * c[il;

e Assuming 4 threads, the following results

1 1*THREADS |1*THREADS/100
0..24 0..96 0
25..49 100..196 1
50..74 200..296 2
75..99 300..396 3

Let’s explore this further in worksheet 36!

23

Matrix-Vector Multiply (Default Distribution)

// vect mat mult.c
#include <upc relaxed.h>

shared int a[THREADS] [THREADS] ;
shared int b[THREADS], c¢[THREADS];
void main (void) {
int 1, j;
upc forall(i = 0; i < THREADS; i++; i) {
c[i] = O;
for (j= 0 ; j < THREADS; j++)
c[i] += a[i][J]1*b[]]:

Th. 0 Th. 0

0|peaJyL

Matrix-Vector Multiply (Better Distribution)

// vect mat mult.c
#include <upc relaxed.h>

shared [THREADS] int a[THREADS] [THREADS] ;
shared int b[THREADS], c[THREADS];
void main (void) {
int i, j;
upc forall(i = 0 ; i < THREADS ; i++; i) {
c[i] = 0;
for (j= 0 ; j< THREADS ; j++)
c[i] += a[i][]J]*b[]]~

Th. 0

Thread O

Th. O

Synchronization - Barriers

Barriers (blocking)
—upc_barrier expr_opt;

like “next” operation in HJ

Split-phase barriers (non-blocking)
—upc_notify expr_opt;

like explicit signal on an HJ phaser

—upc_wait expr_opt;

note: upc_notify is not blocking upc_wait is
like explicit wait on an HJ phaser

26

Synchronization - Locks

e Lock primitives
—void upc_lock(upc_lock_t *I)
—int upc_lock_attempt(upc_lock_t *l) // success returns 1
—void upc_unlock(upc_lock t *I)

e Locks are allocated dynamically, and can be freed

e |Locks are properly initialized after they are allocated

27

Application Work in PGAS

¢ Network simulator in UPC (Steve Hofmeyr, LBNL
e Barnes-Hut in UPC (Marc Snir et al)

e |[andscape analysis

—*“Contributing Area Estimation” in UPC
(Brian Kazian, UCB)

e GTS Shifter in CAF
—Preissl, Wichmann, Long, Shalf,

Dk 932 %) W 7 e 6‘.’2}
E th ie r, KO n | g es (L B N L, C ray, P P P L) s S e B g 155 s A s o
40
35 /,
& 30 /
= /
§ 25 /
2 20 / / ""MPI-gtS
2 15 - —~ —#*CAF-atom
= /
= 10 — / -e-CAF-lock
e ——
0

4096 8192 16384 32768 65536 131072
Slide credit: Kathy Yelick, January 2011 MPI Processes / CAF images

Worksheet #36: UPC data distributions

Name 1: Name 2:

In the following example from slide 23, assume that each UPC array is distributed by
default across threads with a cyclic distribution. In the space below, identify an
iteration of the upc_forall construct for which all array accesses are local, and an
iteration for which all array accesses are non-local (remote). Explain your answer in

each case.
shared int a[100],b[100], c[100];
inti;
upc_forall (i=0; i<100; i++; (*THREADS)/100)
a[i] = b[i] * c[i];

29

