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Worksheet #36: UPC data distributions

In the following example from slide 23, assume that each UPC array is 
distributed by default across threads with a cyclic distribution.  In the space 
below, identify an iteration of the upc_forall construct for which all array 
accesses are local, and an iteration for which all array accesses are non-local 
(remote).  Explain your answer in each case.

shared int a[100],b[100], c[100];
int i;
upc_forall (i=0; i<100; i++; (i*THREADS)/100)
    a[i] = b[i] * c[i];
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Solution:
• Iteration 0 has affinity with thread 0, and accesses a[0], b[0], 
c[0], all of which are located locally at thread 0
• Iteration 1 has affinity with thread 0, and accesses a[1], b[1], 
c[1], all of which are located remotely at thread 1
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Announcements
• Graded midterm exams can be picked up from Sherry Nassar in 

Duncan Hall 3139

• Homework 6 is officially due on April 19th, but everyone can get 
an automatic penalty-free extension till April 26th

• Final exam will be given on April 19th to be taken in any two-hour 
duration returned to Sherry Nassar by April 26th (as was done 
with midterm exams)
— Final exam will cover material from Lectures 19 - 37

• Next lecture (April 19th) is the last lecture!
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Parallel Programming is a Cross-Cutting 
Concern
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Different Parallel Programming Models for different 
Levels of Developer Pyramid and Software Stack
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Outline
• Pthreads

• OpenMP

• CUDA
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POSIX Thread API (Pthreads) 
• Standard user threads API supported by most vendors

• Library interface, intended for system programmers 

• Concepts behind Pthreads interface are broadly applicable
—largely independent of the API 
—useful for programming with other thread APIs as well 

– Windows threads
– Solaris threads
– Java threads
– …

• Threads are peers, unlike Linux/Unix processes
—no parent/child relationship
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PThread Creation

Asynchronously invoke thread_function in a new thread (like an 
async)

!    #include <pthread.h>
!    int pthread_create(
!      pthread_t *thread_handle, /* returns handle here */
!      const pthread_attr_t *attribute, 

!    void * (*thread_function)(void *), 
!    void *arg); /* single argument; perhaps a structure */

attribute created by pthread_attr_init

contains details about
•   whether scheduling policy is inherited or explicit
•   scheduling policy, scheduling priority
•   stack size, stack guard region size

Can use NULL for pthread_attr_init for default values
9
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Pthread Termination

• A thread terminates by calling the function pthread_exit(). A 
single argument, a pointer to a void* object, is supplied as the 
argument to pthread_exit. This value is returned to any thread that 
has blocked while waiting for this thread to exit. 

• Suspend parent thread until child thread terminates (like 
Thread.join() in Java)

   #include <pthread.h>
   int pthread_join ( 

  pthread_t thread, /* thread id */
  void **ptr); /* ptr to location for return code a terminating
                                    thread passes to pthread_exit */
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Example: Creation and Termination (main)
#include <pthread.h> 
#include <stdlib.h> 
#define NUM_THREADS 32 
void *compute_pi (void *); 
... 
int main(...) { 

... 
pthread_t p_threads[NUM_THREADS]; 
pthread_attr_t attr; 
pthread_attr_init(&attr); 
for (i=0; i< NUM_THREADS; i++) { 

hits[i] = i; 
pthread_create(&p_threads[i], &attr, compute_pi, 
   (void*) &hits[i]); 

} 
for (i=0; i< NUM_THREADS; i++) { 

pthread_join(p_threads[i], NULL); 
total_hits += hits[i]; 

} 
... 

} 
11



   pthread_mutex_t cost_lock; 
... 
int main() { 

... 
pthread_mutex_init(&cost_lock, NULL); 
... 

} 
void *find_best(void *list_ptr) { 

... 
pthread_mutex_lock(&cost_lock);   /* lock the mutex */

  if (my_cost < best_cost) 

   best_cost = my_cost;  
pthread_mutex_unlock(&cost_lock); /* unlock the mutex */ 

} 
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Example of Implementing a Reduction 
Using Mutex Locks

critical section
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Composite Synchronization Constructs
• Pthreads provides only basic synchronization constructs

• Build higher-level constructs from basic ones e.g., barriers
—Pthreads extension includes barriers as synchronization objects 

(available in Single UNIX Specification) 
– Enable by #define _XOPEN_SOURCE 600 at start of file

—Initialize a barrier for count threads
– int pthread_barrier_init(pthread_barrier_t *barrier, 

const pthread_barrier attr_t *attr, int count); 
—Each thread waits on a barrier by calling

– int pthread_barrier_wait(pthread_barrier_t *barrier); 
—Destroy a barrier

– int pthread_barrier_destroy(pthread_barrier_t 
*barrier); 

• NOTE: Java threads and HJ worker threads are also implemented as 
pthreads

13
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Summary of key features in Pthreads
Pthreads construct Related HJ/Java constructs

pthread_create() HJ’s async; Java’s “new Thread” and 
“Thread.start()”

pthread_join() HJ’s finish & future get(); Java’s “Thread.join()”

pthread_mutex_lock() HJ’s begin-isolated, actors; Java’s begin-
synchronized, and lock() library calls

pthread_mutex_unlock() HJ’s end-isolated, actors; Java’s end-
synchronized, and unlock() library calls

pthread_cond_signal() Deterministic use: HJ’s phasers; 
Nondeterministic use: j.u.c.locks.condition

pthread_cond_wait() Deterministic use: HJ’s phasers; 
Nondeterministic use: j.u.c.locks.condition
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Outline
• Pthreads

• OpenMP

• CUDA
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What is OpenMP?
• Well-established standard for writing shared-memory parallel 

programs in C, C++ Fortran

• Programming model is expressed via
—Pragmas/directives (not language extensions)
—Runtime routines
—Environment variables

—Specification maintained by the OpenMP Architecture Review Board 
(http://www.openmp.org)

—Latest specification: Version 3.0 (May 2008)
—Previous specification: Version 2.5 (May 2005)

16
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A first OpenMP example

17

OpenMP parallel for loop is 
like a forall loop in HJ
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The OpenMP Execution Model

18
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Terminology
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Parallel Region

A parallel region is a block of code executed by multiple threads 
simultaneously in SPMD mode, and supports the following clauses:

20
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Work-sharing constructs in a Parallel Region

• The work is distributed over the threads 
• Must be enclosed in a parallel region 
• Must be encountered by all threads in the team, 
or none at all 
• No implied barrier on entry; implied barrier on 
exit (unless nowait is specified) 
• A work-sharing construct does not launch any new 
threads
• Shorthand syntax supported for parallel region 
with single work-sharing construct e.g., 

21
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Legality constraints for work-sharing 
constructs

• Each worksharing region must be encountered by all threads in a team or 
by none at all.

• The sequence of worksharing regions and barrier regions encountered 
must be the same for every thread in a team.

#pragma omp parallel
{
  do { 
    // c1 and c2 may depend on the OpenMP thread-id
    boolean c1 = … ; boolean c2 = … ;
    . . . 
    if (c2) {
      // Start of work-sharing region with no wait clause
      #pragma omp … 
      . . . // Worksharing statement 
    } // if (c2)
  } while (! c1);
}

==> No OpenMP implementation checks for conformance with this rule (unlike HJ’s 
runtime check for phaser single statements)

22
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Example of work-sharing “omp for” loop

23

Implicit finish

Like HJ’s forasync

Like HJ’s forasync
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task Construct

#pragma omp task [clause[[,]clause] ...]
                     structured-block

if (expression) 
untied
shared (list)
private (list) 
firstprivate (list)
default( shared | none  )

where clause can be one of:

24
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Example – parallel pointer chasing using tasks

1.#pragma omp parallel
2.{ 
3.  #pragma omp single private(p)
4.   { 
5.    p = listhead ;
6.    while (p) { 
7.       #pragma omp task
8.               process (p);
9.       p= p->next ;
10.     } 
11.   } 
12.}

Spawn call to process(p)

Implicit finish at end of parallel region

25
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Summary of key features in OpenMP
OpenMP construct Related HJ/Java constructs

Parallel region
#pragma omp parallel

HJ forall (forall iteration = OpenMP thread)

Work-sharing constructs: 
parallel loops, parallel sections No direct analogy in HJ or Java

Barrier
#pragma omp barrier

HJ forall-next on implicit phaser

Single 
#pragma omp single

HJ’s forall-next-single on implicit phaser
(but HJ does not support single + nowait)

Reduction clauses HJ’s finish accumulators (in forall)

Critical section
#pragma omp critical

HJ’s isolated statement

Task creation
#pragma omp task

HJ’s async statement

Task termination
#pragma omp taskwait

HJ’s finish statement
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Outline
• Pthreads

• OpenMP

• CUDA
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Flynn’s Taxonomy for Parallel 
Computers

Single Instruction Multiple Instructions
Single Data SISD MISD
Multiple Data SIMD MIMD

Single Instruction, Single Data stream (SISD)
A sequential computer which exploits no parallelism in either the instruction or data 

streams. e.g., old single processor PC

Single Instruction, Multiple Data streams (SIMD)
A computer which exploits multiple data streams against a single instruction stream to 
perform operations which may be naturally parallelized. e.g. graphics processing unit

Multiple Instruction, Single Data stream (MISD)
Multiple instructions operate on a single data stream. Uncommon architecture which is 
generally used for fault tolerance. Heterogeneous systems operate on the same data 
stream and must agree on the result. e.g. the Space Shuttle flight control computer.

Multiple Instruction, Multiple Data streams (MIMD)
Multiple autonomous processors simultaneously executing different instructions on 
different data. e.g. a PC cluster memory space.

28
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SIMD pattern: 
Single Instruction Multiple Data 

• Definition: A single instruction 
stream is applied to multiple 
data elements. 
• One program text
• One instruction counter
• Distinct data streams per 

Processing Element (PE)

PE

PE

PE

PE

Source: Mattson and Keutzer, UCB 
CS294
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Matrix Multiplication 
(with multiple sources of parallelism)

  double[][] a, b, c;  // three 2D arrays : a,b,c
  int n; // Assume that all arrays are of size n*n
  
  forall(point[i,j] : [0:n-1,0:n-1] {
             
            
            c[i][j] = sum(a[i][0:n-1] * b[0:n-1][j]);
            
  }
 Dot product is expressed as SIMD parallelism

(This is pseudocode, not real HJ code)

Loop parallelism

30
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Array slice notation
• Designating different slices of an array.

A[:][:] A[3][:] A[:][3]

A[2][3] A[1:3][:] A[1:3][2:4]

31
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SPMD Pattern
• SPMD: Single Program Multiple Data

• Run the same program on P processing elements (PEs)

• Use the “rank” … an ID ranging from 0 to (P-1) … to determine 
what computation is performed on what data by a given PE

• Different PEs can follow different paths through the same code 
(unlike the SIMD pattern)

• Convenient pattern for hardware platforms that are not amenable 
to efficient forms of dynamic task parallelism
—General-Purpose Graphics Processing Units (GPGPUs)
—Distributed-memory parallel machines

• Key design decisions --- what data and computation should be 
replicated or partitioned across PEs?
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SPMD Example: Iterative Averaging
1. double[] gVal=new double[n+2]; double[] gNew=new double[n+2]; 

2. gVal[n+1] = 1; // Boundary condition

3. int Cj = Runtime.getNumOfWorkers();

4. forall (point [jj]:[0:Cj-1]) { // SPMD computation

5.   double[] myVal = gVal; double[] myNew = gNew; // Local copy

6.   for (point [iter] : [0:numIters-1]) {

7.     // Compute MyNew as function of input array MyVal

8.     for (point [j]:getChunk([1:n],[Cj],[jj]))

9.        myNew[j] = (myVal[j-1] + myVal[j+1])/2.0;

10.    next; // Barrier before executing next iteration of iter loop

11.    // Swap myVal and myNew (replicated computation)

12.    double[] temp=myVal; myVal=myNew; myNew=temp;

13.    // myNew becomes input array for next iter

14.  } // for

15.} // forall

33



COMP 322, Spring 2013 (V. Sarkar)

CPUs and GPUs have fundamentally 
different design philosophies 

DRAM 

Co 
Ca  A A  A  A  A A  A A  A A A  A  A  A A  A 

Streaming Multiprocessor 

Cache 

ALU 
Control 

ALU 

ALU 

ALU 

DRAM 

Single CPU core Multiple GPU processors 

GPU = Graphics Processing Unit

GPUs are provided to accelerate graphics, but they can also be used 
for non-graphics applications that exhibit large amounts of data 
parallelism and require large amounts of “streaming” throughput
⇒ SIMD parallelism within an SM, and SPMD parallelism across SMs
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Process Flow of a CUDA Kernel Call 
(Compute Unified Device Architecture)

• Data parallel programming architecture from NVIDIA
—Execute programmer-defined kernels on 

extremely parallel GPUs
—CUDA program flow: 

1. Push data on device
2. Launch kernel
3. Execute kernel and memory accesses in 

parallel
4. Pull data off device

• Device threads are launched in batches
—Blocks of Threads, Grid of Blocks

• Explicit device memory management 
—cudaMalloc, cudaMemcpy, cudaFree, etc.

• NOTE: OpenCL is a newer standard for GPU 
programming that is more portable than CUDA Figure source: Y. Yan et. al “JCUDA: a 

Programmer Friendly Interface for 
Accelerating Java Programs with CUDA.” 
Euro-Par 2009.
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Execution of a CUDA program 
• Integrated host+device application

— Serial or modestly parallel parts on CPU host
— Highly parallel kernels on GPU device

Host Code 
(small number of threads)

. . .

. . .

Device Kernel
(large number of threads)

Host Code 
(small number of threads)

Device Kernel
(large number of threads)

Host Code 
(small number of threads)
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Matrix multiplication kernel code in CUDA 
(SPMD model with index = threadIdx)

37
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Host Code in C for Matrix Multiplication
1. void MatrixMultiplication(float* M, float* N, float* P, int Width) 

{

2.   int size = Width*Width*sizeof(float); // matrix size

3.   float* Md, Nd, Pd; // pointers to device arrays

4.   cudaMalloc((void**)&Md, size); // allocate Md on device

5.   cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); // copy M to Md

6.   cudaMalloc((void**)&Nd, size); // allocate Nd on device

7.   cudaMemcpy(Nd, M, size, cudaMemcpyHostToDevice); // copy N to Nd

8.   cudaMalloc((void**)&Pd, size); // allocate Pd on device

9.   dim3 dimBlock(Width,Width); dim3 dimGrid(1,1);

10.   // launch kernel (equivalent to “async at(GPU), forall, forall”

11.   MatrixMulKernel<<<dimGrid,dimBlock>>>(Md, Nd, Pd, Width);

12.   cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); // copy Pd to P

13.   // Free device matrices

14.   cudaFree(Md); cudaFree(Nd); cudaFree(Pd); 

15. }
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HJ abstraction of a CUDA kernel 
invocation: async at + forall + forall

async at(GPU)

async at(GPU)

forall(blockIdx)

forall(threadIdx)
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CUDA Host-Device Data Transfer

• cudaError_t cudaMemcpy(void* dst, const 
void* src, size_t count, enum cudaMemcpyKind 
kind)

• copies count bytes from the memory area 
pointed to by src to the memory area pointed to 
by dst, where kind is one of 
—cudaMemcpyHostToHost
—cudaMemcpyHostToDevice
—cudaMemcpyDeviceToHost
—cudaMemcpyDeviceToDevice 

• The memory areas may not overlap
• Calling cudaMemcpy() with dst and src pointers 

that do not match the direction of the copy 
results in an undefined behavior. 
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CUDA Variable Type Qualifiers

• __device__ is optional when used with __local__,  __shared__, or  
__constant__

• Automatic variables without any qualifier reside in a register
— Except arrays that reside in local memory

• Pointers can only point to memory allocated or declared in global memory:
—Allocated in the host and passed to the kernel: 
 __global__ void KernelFunc(float* ptr)

—Obtained as the address of a global variable: float* ptr = 
&GlobalVar;

Variable declaration Memory Scope Lifetime
__device__ __local__    int LocalVar; local thread thread
__device__ __shared__   int SharedVar; shared block block
__device__              int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application
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CUDA Storage Classes
• Local Memory:    per-thread

— Private per thread
— Auto variables, register spill

• Shared Memory:  per-Block
— Shared by threads of the same 

block
— Inter-thread communication

• Global Memory:   per-application
— Shared by all threads
— Inter-Grid communication

Thread

Local Memory

Grid 0

. . .
Global

Memory

. . .

Grid 1
Sequential
Grids
in Time

Block

Shared
Memory
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Summary of key features in CUDA
CUDA construct Related HJ/Java constructs

Kernel invocation,
<<<. . .>>>

async at(gpu-place)

1D/2D grid with 1D/2D/3D 
blocks of threads

Outer 1D/2D forall with inner 1D/2D/3D forall

Intra-block barrier,
__syncthreads()

HJ forall-next on implicit phaser for inner forall

cudaMemcpy() No direct equivalent in HJ/Java (can use 
System.arraycopy() if needed)

Storage classes: local, 
shared, global

No direct equivalent in HJ/Java (method-local 
variables are scalars)
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Comparison of Multicore Programming Models 
along Selected Dimensions
Dynamic 

Parallelism
Locality Control Mutual Exclusion Collective & Point-

to-point 
Synchronization

Data Parallelism

Cilk Spawn, sync None Locks None None

Java 
Concurrency

Executors, 
Task Queues

None Locks, monitors, 
atomic classes

Synchronizers Concurrent collections

Intel C++ 
Threading 
Building Blocks

Generic 
algorithms, 

tasks

None Locks, atomic 
classes

None Concurrent containers

.Net Parallel 
Extensions

Generic 
algorithms, 

tasks

None Locks, monitors Futures PLINQ

OpenMP SPMD (v2.5), 
Tasks (v3.0)

None Locks, critical, 
atomic

Barriers None

CUDA None until 
recently (v5) 

Device, grid, block, 
threads

None Barriers SPMD

Habanero-Java
(builds on Java 
Concurrency)

Async, finish Places Isolated blocks, 
Java atomic 

classes

Phasers, futures, 
data-driven tasks

Parallel array 
operations, Java 

concurrent collections


