
COMP 322: Fundamentals of
Parallel Programming

Lecture 6: Data Races (contd),
Futures --- Tasks with Return Values

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 6 18 January 2013

COMP 322, Spring 2013 (V.Sarkar)2

COMP 322 Grading Policy
(from course web site)

• Weekly Quizzes 10%
— One lecture quiz + one lab quiz per week
— No extensions past deadline
— Open book

• Exams (2) 40%
— Take-home written exams
— No extensions past deadline
— Closed book

• Quizzes and exams test your individual understanding and knowledge of
the material. Collaboration on quizzes and exams is strictly forbidden.

• Homeworks (6) 40%
— Written and programming components
— 10% per day late penalty up to 6 days (HW1 due by 5pm on Jan 23rd)
— Send zip file to comp322-staff if you cannot submit homework via turnin
— You can discuss homework problem approaches with others, but submission must be your own

individual effort

• Class Participation 10%
— Lecture worksheets, classroom, lab & on-line discussions, brilliant observations, ...
— Lecture worksheets are graded for participation (not for quality of answer)

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Recap of Data Races, Determinism, Memory Models

• Futures --- Tasks with Return Values

• Acknowledgments
—COMP 322 Module 1 handout, Chapter 4, Sections 5.1, 5.2

– https://svn.rice.edu/r/comp322/course/module1-2013-01-06.pdf

3

COMP 322, Spring 2013 (V.Sarkar)4

Solution to Worksheet #5: Data Races and Determinism
Consider a modified String Search program that returns true if any occurrence is

found, rather than the count of all occurrences:
1. static boolean found = false; // static field

2. . . .

3. finish for (int i = 0; i <= N - M; i++)

4. async {

5. int j;

6. for (j = 0; j < M; j++)

7. if (text[i+j] != pattern[j]) break;

8. if (j == M) found = true; // found at offset i

9. } // finish-for-async
Questions:
1. Does this program have a data race?
 Yes. Multiple async tasks can write to the same static field, found.
2. Is it deterministic?
 Yes. The answer will be the same regardless of the order of the writes.
3. Is it structurally deterministic?
 Yes. The computation graph will always be the same for the same input.

COMP 322, Spring 2013 (V.Sarkar)5

Definition of Data Races
 Formally, a data race occurs on location L in a program execution with

computation graph CG if there exist steps (nodes) S1 and S2 in CG such
that:
1. S1 does not depend on S2 and S2 does not depend on S1 i.e., there is

no path of dependence edges from S1 to S2 or from S2 to S1 in CG, and
2. Both S1 and S2 read or write L, and at least one of the accesses is a

write. (L must be a shared location i.e., a static field, instance field, or
array element.)

• A program is data-race-free it cannot exhibit a data race for any input

• Above definition includes all “potential” data races i.e., it’s considered a
data race even if S1 and S2 execute on the same processor

• Above definition focuses on interfering pairs of read/write accesses, but
ignores the values e.g.,

— Two parallel writes of X = 1 are considered to be a data race
— If Y=1 initially, then a parallel read of Y and a (re)write of Y=1 are also

considered to be a data race

COMP 322, Spring 2013 (V.Sarkar)

Definitions of Determinism and
Structural Determinism

• A parallel program is said to be deterministic with
respect to its inputs if it always computes the same
answer when given the same inputs.

• A parallel program is said to be structurally
deterministic with respect to its inputs if its final
computation graph is guaranteed to be the same for all
executions of the program with the same inputs
— Structural determinism is also referred to as

“determinacy”

• Structural Determinism Property for HJ programs
—If an HJ parallel program is written using only the constructs in

Module 1 and is guaranteed to be data-race-free, then it must
be structurally deterministic with respect to its inputs.

6

COMP 322, Spring 2013 (V.Sarkar)

A Classification of Parallel Programs

7

Data Race
Free?

Deterministic? Structurally
Deterministic?

Example: String Search
variation

Yes Yes Yes Count of all occurrences
No Yes Yes Existence of an occurrence
No No Yes Index of any occurrence
No Yes No “Eureka” extension for

existence of an occurrence: do
not create more async tasks
after occurrence is found

No No No “Eureka” extension for index of
an occurrence: do not create
more async tasks after
occurrence is found

Structural Determinism Property implies that it is not possible to write an HJ
program with Yes in column 1, and No in column 2 or column 3 (when only
using Module 1 constructs)

COMP 322, Spring 2013 (V.Sarkar)

String Search variation: “Eureka”
extension for existence of occurrence

8

1. static boolean found = false; //static field

2. . . .

3. finish for (int i = 0; i <= N - M; i++) {

4. if (found) break; // Eureka!

5. async {

6. for (j = 0; j < M; j++)

7. if (text[i+j] != pattern[j]) break;

8. if (j == M) found = true;

9. } // async

10. } // finish-for

COMP 322, Spring 2013 (V.Sarkar)

Memory Consistency Models
• A memory consistency model, or memory model, is the part of a programming

specification that defines what write values a read may observe
— For data-race-free programs, all memory models are identical since each read can

observe exactly one write value
⇒ if you only write data-race-free programs, you don’t have to worry about memory

models!

• Question: why do different memory models have different rules for data
races?

• Answer: because different memory models are useful at different levels of
software

— Sequential Consistency (SC)
– Useful for implementing low-level synchronization primitives e.g., operating
system services

— Java Memory Model (JMM)
– Useful for implementing task schedulers e.g., HJ runtime

— Habanero Java Memory Model (HJMM)
– Useful for specifying semantics at application task level e.g., HJ programs
– Derived from past work on “Location Consistency” memory model

SC

JMM

HJMM

9

COMP 322, Spring 2013 (V.Sarkar)10

Example 1: can task T4 print 1, 2, 1?
Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. System.out.println("First read = " + p.x);

11. System.out.println("Second read = " + q.x);

12. System.out.println("Third read = " + p.x);

13.}

Task T1 Task T2

Task T3 Task T4

p.x=1; p.x=2;

...=p.x;

...=q.x;

...=p.x;

...=p.x;

...=p.x;

...=p.x;

Answer:
• SC ⇒ No

• JMM ⇒ Maybe

• HJMM ⇒ Yes

COMP 322, Spring 2013 (V.Sarkar)11

Example 2: can p.x be replaced by a local
variable in task T4?

Example HJ program:

1. p.x = 0; q = p;

2. async p.x = 1; // Task T1

3. async p.x = 2; // Task T2

4. async { // Task T3

5. System.out.println("First read = " + p.x);

6. System.out.println("Second read = " + p.x);

7. System.out.println("Third read = " + p.x)

8. }

9. async { // Task T4

10. // Assume programmer doesn’t know that p=q

11. int p_x = p.x;

12. System.out.println("First read = " + p_x);

13. System.out.println("Second read = " + q.x);

14. System.out.println("Third read = " + p_x);

15.}

Task T1 Task T2

Task T3

Task T4

p.x=1;
(4)

p.x=2;
(6)

...=p_x; (5)

...=q.x; (7)

...=p_x; (8)

...=p.x; (1)

...=p.x; (2)

...=p.x; (3)

0
0
0

1
2
1

O
u
t
p
u
t

Answer:
• SC ⇒ No

• JMM ⇒ Maybe

• HJMM ⇒ Yes

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Recap of Data Races, Determinism, Memory Models

• Futures --- Tasks with Return Values

• Acknowledgments
—COMP 322 Module 1 handout, Chapter 4, Sections 5.1, 5.2

– https://svn.rice.edu/r/comp322/course/module1-2013-01-06.pdf

12

COMP 322, Spring 2013 (V.Sarkar)

Extending Async Tasks with
Return Values

• Example Scenario in PseudoCode
1. // Parent task creates child async task

2. final future<int> container =

3. async<int> { return computeSum(X, low, mid); };

4. . . .

5. // Later, parent examines the return value

6. int sum = container.get();

• Two issues to be addressed:
1) Distinction between container and value in container (box)
2) Synchronization to avoid race condition in container accesses

13

Parent Task Child Task
container = async {...}
. . .
container.get()

computeSum(...)
return ...

return valuecontainer

COMP 322, Spring 2013 (V.Sarkar)14

HJ Futures: Tasks with Return Values

async<T> { Stmt-Block }

• Creates a new child task that
executes Stmt-Block, which
must terminate with a return
statement returning a value of
type T

• Async expression returns a
reference to a container of
type future<T>

• Values of type future<T> can
only be assigned to final
variables

Expr.get()
• Evaluates Expr, and blocks if

Expr’s value is unavailable
• Expr must be of type

future<T>
• Return value from Expr.get()

will then be T
• Unlike finish which waits for

all tasks in the finish scope, a
get() operation only waits for
the specified async
expression

1. // Parent Task T1 (main program)

2. // Compute sum1 (lower half) and sum2 (upper half) in parallel

3. final future<int> sum1 = async<int> { // Future Task T2

4. int sum = 0;

5. for(int i=0 ; i < X.length/2 ; i++) sum += X[i];

6. return sum;

7. }; //NOTE: semicolon needed to terminate assignment to sum1

8. final future<int> sum2 = async<int> { // Future Task T3

9. int sum = 0;

10. for(int i=X.length/2 ; i < X.length ; i++) sum += X[i];

11. return sum;

12. }; //NOTE: semicolon needed to terminate assignment to sum2

13. //Task T1 waits for Tasks T2 and T3 to complete

14. int total = sum1.get() + sum2.get();

COMP 322, Spring 2013 (V.Sarkar)15

Example: Two-way Parallel Array Sum
using Future Tasks

Why are these semicolons needed?

COMP 322, Spring 2013 (V.Sarkar)16

Future Task Declarations and Uses

• Variable of type future<T> is a reference to a future object
—Container for return value of T from future task
—The reference to the container is also known as a “handle”

• Two operations that can be performed on variable V1 of type
future<T1> (assume that type T2 is a subtype of type T1):
— Assignment: V1 can be assigned value of type future<T2>
— Blocking read: V1.get() waits until the future task referred to by

V1 has completed, and then propagates the return value

• Future task body must start with a type declaration, async<T1>,
where T1 is the type of the task's return value

• Future task body must consist of a statement block enclosed in { }
braces, terminating with a return statement

COMP 322, Spring 2013 (V.Sarkar)17

Comparison of Future Task and Regular
Async Versions of Two-Way Array Sum

• Future task version initializes two references to future
objects, sum1 and sum2, and both are declared as final

• No finish construct needed in this example
—Instead parent task waits for child tasks by performing

sum1.get() and sum2.get()

• Easier to guaranteed absence of race conditions in
Future Task version
—No race on sum because it is a local variable in tasks T2 and T3
—No race on future variables, sum1 and sum2, because of

blocking-read semantics

COMP 322, Spring 2013 (V.Sarkar)18

Reduction Tree Schema in ArraySum1
(Recap)

Questions:

• How can we implement this schema using future tasks instead?

• Can we avoid overwriting elements of array X?

1. static int computeSum(int[] X, int lo, int hi) {
2. if (lo > hi) return 0;
3. else if (lo == hi) return X[lo];
4. else {
5. int mid = (lo+hi)/2;
 final future<int> sum1 =
6. async<int> { return computeSum(X, lo, mid); };
7. final future<int> sum2 =
8. async<int> { return computeSum(X, mid+1, hi); };
9. // Parent now waits for the container values
10. return sum1.get() + sum2.get();
11. }
12. } // computeSum

13. int sum = computeSum(X, 0, X.length-1); // main program

COMP 322, Spring 2013 (V.Sarkar)19

Array Sum using Future Tasks
(ArraySum2)

Recursive divide-and-conquer pattern

COMP 322, Spring 2013 (V.Sarkar)20

Computation Graph Extensions for
Future Tasks

• Since a get() is a blocking operation, it must occur on boundaries of
CG nodes/steps
—May require splitting a statement into sub-statements e.g.,

– 14: int sum = sum1.get() + sum2.get();
 can be split into three sub-statements

– 14a int temp1 = sum1.get();
– 14b int temp2 = sum2.get();
– 14c int sum = temp1 + temp2;

• Spawn edge connects parent task to child future task, as before

• Join edge connects end of future task to Immediately Enclosing
Finish (IEF), as before

• Additional join edges are inserted from end of future task to each
get() operation on future object

COMP 322, Spring 2013 (V.Sarkar)21

Computation Graph for Two-way Parallel
Array Sum using Future Tasks

NOTE: DrHJ’s data race detection tool does not support futures as yet
(it only supports finish, async, and isolated constructs)

COMP 322, Spring 2013 (V.Sarkar)22

Worksheet #6: Computation Graphs for
Async-Finish and Future Constructs

A

B C

D E

F

1) Can you write an HJ program with
async-finish constructs that generates
a Computation Graph with the same
ordering constraints as the graph on
the right? If so, provide a sketch of
the program.

2) Can you write an HJ program with
future async-get constructs that
generates a Computation Graph with
the same ordering constraints as the
graph on the right? If so, provide a
sketch of the program.

Use the space below for your answers

Name 1: ___________________ Name 2: ___________________

