COMP 322: Fundamentals of Parallel Programming

Lecture 2: Computation Graphs, Ideal Parallelism

Vivek Sarkar

Department of Computer Science, Rice University

<u>vsarkar@rice.edu</u>

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Async and Finish Statements for Task Creation and Termination (Recap)

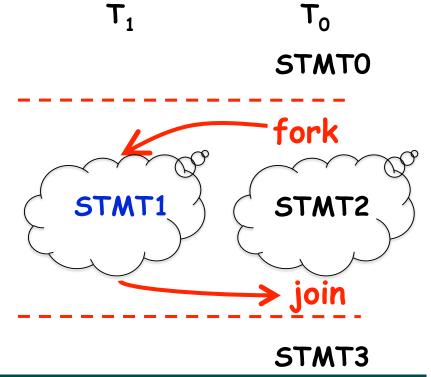
async S

 Creates a new child task that executes statement S

finish S

 Execute S, but wait until all asyncs in S's scope have terminated.

```
// T<sub>0</sub>(Parent task)
STMT0;
finish {    //Begin finish
    async {
        STMT1; //T<sub>1</sub>(Child task)
    }
    STMT2; //Continue in T<sub>0</sub>
        //Wait for T<sub>1</sub>
}
STMT3; //Continue in T<sub>0</sub>
```



Solution to Worksheet 1 (Parallel Matrix Multiplication)

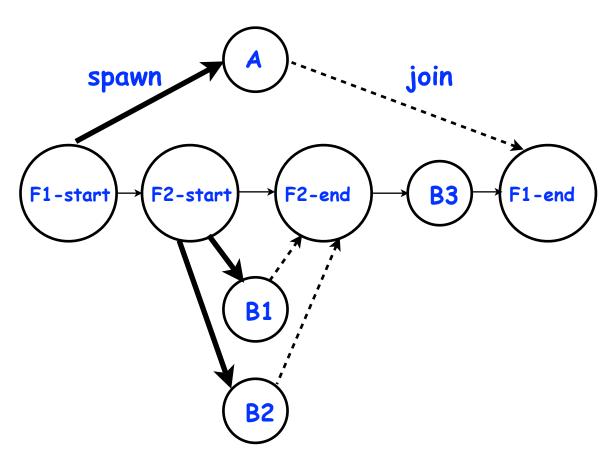
```
1.finish {
2. for (int i = 0 ; i < N ; i++)
3. for (int j = 0 ; j < N ; j++)
4.    async {
5.    for (int k = 0 ; k < N ; k++)
6.    C[i][j] += A[i][k] * B[k][j];
7.   } // async
8.} // finish</pre>
```

This program generates N² parallel async tasks, one to compute each C[i][j] element of the output array

Which statements can potentially be executed in parallel with each other?

```
1. finish { // F1
2. async A;
3. finish { // F2
4. async B1;
5. async B2;
6. } // F2
7. B3;
8. } // F1
```

Computation Graph



Computation Graphs

- A Computation Graph (CG) captures the dynamic execution of a parallel program, for a specific input
- CG nodes are "steps" in the program's execution
 - A step is a sequential subcomputation without any async, begin-finish and end-finish operations
- CG edges represent ordering constraints
 - "Continue" edges define sequencing of steps within a task
 - "Spawn" edges connect parent tasks to child async tasks
 - "Join" edges connect the end of each async task to its IEF's end-finish operations
- All computation graphs must be acyclic
 - —It is not possible for a node to depend on itself
- Computation graphs are examples of "directed acyclic graphs" (dags)

Complexity Measures for Computation Graphs

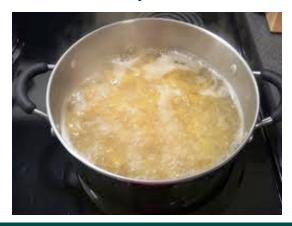
Define

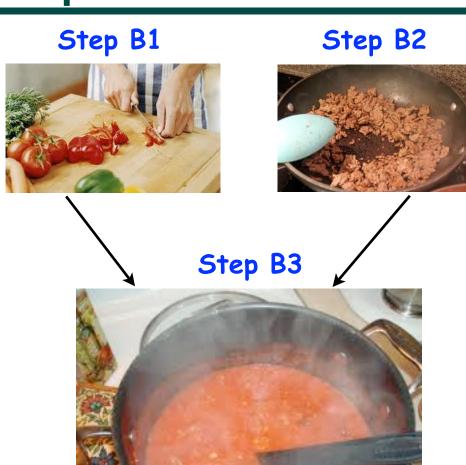
- TIME(N) = execution time of node N
- WORK(G) = sum of TIME(N), for all nodes N in CG G
 - —WORK(G) is the total work to be performed in G
- CPL(G) = length of a longest path in CG G, when adding up execution times of all nodes in the path
 - —Such paths are called critical paths
 - —CPL(G) is the length of these paths (critical path length)
 - —CPL(G) is also the smallest possible execution time for the computation graph

What is the critical path length of this parallel computation?

```
1. finish { // F1
2. async A; // Boil pasta
3. finish { // F2
4. async B1; // Chop veggies
5. async B2; // Brown meat
6. } // F2
7. B3; // Make pasta sauce
8. } // F1
```

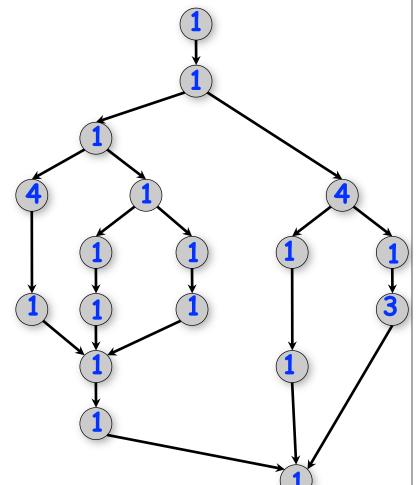
Step A





Ideal Parallelism

- Define ideal parallelism of Computation G Graph as the ratio, WORK(G)/CPL(G)
- Ideal Parallelism is independent of the number of processors that the program executes on, and only depends on the computation graph



<u>Example</u>:

$$WORK(G) = 26$$

 $CPL(G) = 11$

Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

String Search Problem

Inputs

- —text: a long string with N characters to search in
- —pattern: a short string of M characters to search for

Output

—Existence of an occurrence (boolean value)

Example

- —pattern: aca
- —output: true (pattern found)

Applications

—Word processing, virus scans, information retrieval, computational biology, web search engines, ...

Variations

—Count of occurrences, index of any occurrence, indices of all occurrences

Brute Force Sequential Algorithm for String Search

```
public static boolean search(char[] pattern, char[] text) {
2.
      int M = pattern.length; int N = text.length;
3.
      boolean found = false;
4.
      for (int i = 0; i \le N - M; i++) {
5.
        int j; // search for pattern starting at text[i]
6.
        for (j = 0; j < M; j++) {
          // Count each char comparison as 1 unit of work
7.
8.
          if (text[i+j] != pattern[j]) break;
9.
       10.
        if (j == M) found = true; // found at offset i
11.
       }
12.
      return found;
13.
```

What is the complexity (work) of this algorithm?

Parallel Algorithm for String Search

- Consider a parallel algorithm in which each i iteration is spawned as a separate async task
- For this above algorithm (assuming N >> M)

```
—WORK ~ M*N,
```

- -CPL ~ M
- —Ideal Parallelism ~ N
- Big-O notation: We say that a cost function Cost(n) is "order f(n)", or simply "O(f (n))" (read "Big-O of f (n))") if
 - —Cost(n) < factor * f (n), for sufficiently large n, for some constant factor
- If we consider M to be a constant in the String Search example then WORK = O(N), CPL = O(1), and Ideal Parallelism = O(N)

Course Announcements

- All Unit 1 lecture and demonstration quizzes are due by Jan 24th
 - —Quizzes are still being uploaded into edX (see schedule on wiki)
- Homework 1 will be assigned on Jan 17th, and will be due on Jan 31st
- We will begin including programming exercises as in-class activities starting Jan 17th
 - —Please bring laptops to class with HJlib set up for the exercises. Laptops can be shared within groups.
- Next week's schedule (Jan 20-24)
 - —No lecture on Monday (MLK Jr Day)
 - —No lab next week on Monday or Wednesday
 - —We will have lectures on Wednesday & Friday as usual

