
COMP 322: Fundamentals of
Parallel Programming

Lecture 2: Computation Graphs,
Ideal Parallelism

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 2 9 January 2013

COMP 322, Spring 2014 (V.Sarkar)2

Async and Finish Statements for Task
Creation and Termination (Recap)

async S

• Creates a new child task that
executes statement S

finish S
§ Execute S, but wait until all

asyncs in S’s scope have
terminated.

// T0(Parent task)
STMT0;
finish { //Begin finish
 async {
 STMT1; //T1(Child task)
 }
 STMT2; //Continue in T0
 //Wait for T1
} //End finish
STMT3; //Continue in T0

STMT2

fork

STMT1

join

T1 T0

STMT3

STMT0

COMP 322, Spring 2014 (V.Sarkar)

Solution to Worksheet 1
(Parallel Matrix Multiplication)

3

1.finish {

2. for (int i = 0 ; i < N ; i++)

3. for (int j = 0 ; j < N ; j++)

4. async {

5. for (int k = 0 ; k < N ; k++)

6. C[i][j] += A[i][k] * B[k][j];

7. } // async

8.} // finish

 This program generates N2 parallel async tasks, one to
compute each C[i][j] element of the output array

COMP 322, Spring 2014 (V.Sarkar)4

Which statements can potentially be
executed in parallel with each other?

1. finish { // F1

2. async A;

3. finish { // F2

4. async B1;

5. async B2;

6. } // F2

7. B3;

8. } // F1

F1-endF1-start F2-start F2-end

A

B1

B2

B3

Computation Graph

spawn join

COMP 322, Spring 2014 (V.Sarkar)5

Computation Graphs
• A Computation Graph (CG) captures the dynamic execution

of a parallel program, for a specific input

• CG nodes are “steps” in the program’s execution
— A step is a sequential subcomputation without any async,

begin-finish and end-finish operations

• CG edges represent ordering constraints
— “Continue” edges define sequencing of steps within a task
— “Spawn” edges connect parent tasks to child async tasks
— “Join” edges connect the end of each async task to its IEF’s

end-finish operations

• All computation graphs must be acyclic
—It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic
graphs” (dags)

COMP 322, Spring 2014 (V.Sarkar)6

Complexity Measures for Computation Graphs
Define

• TIME(N) = execution time of node N

• WORK(G) = sum of TIME(N), for all nodes N in CG G
—WORK(G) is the total work to be performed in G

• CPL(G) = length of a longest path in CG G, when
adding up execution times of all nodes in the path
—Such paths are called critical paths
—CPL(G) is the length of these paths (critical path

length)
—CPL(G) is also the smallest possible execution time

for the computation graph

COMP 322, Spring 2014 (V.Sarkar)7

What is the critical path length of this
parallel computation?

1. finish { // F1

2. async A; // Boil pasta

3. finish { // F2

4. async B1; // Chop veggies

5. async B2; // Brown meat

6. } // F2

7. B3; // Make pasta sauce

8. } // F1

Step A

Step B1 Step B2

Step B3

COMP 322, Spring 2014 (V.Sarkar)8

Ideal Parallelism

• Define ideal parallelism of
Computation G Graph as the
ratio, WORK(G)/CPL(G)

• Ideal Parallelism is independent
of the number of processors that
the program executes on, and
only depends on the computation
graph

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1
Example:
WORK(G) = 26
CPL(G) = 11
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36

COMP 322, Spring 2014 (V.Sarkar)

String Search Problem
• Inputs

—text: a long string with N characters to search in
—pattern: a short string of M characters to search for

• Output
—Existence of an occurrence (boolean value)

• Example
—text: “abacadabrabracabracadababacadabrabracabracadabrabrabr”
—pattern: aca
—output: true (pattern found)

• Applications
—Word processing, virus scans, information retrieval, computational

biology, web search engines, ...

• Variations
—Count of occurrences, index of any occurrence, indices of all

occurrences

9

COMP 322, Spring 2014 (V.Sarkar)

Brute Force Sequential Algorithm for
String Search

1. public static boolean search(char[] pattern, char[] text) {

2. int M = pattern.length; int N = text.length;

3. boolean found = false;

4. for (int i = 0; i <= N - M; i++) {

5. int j; // search for pattern starting at text[i]

6. for (j = 0; j < M; j++) {

7. // Count each char comparison as 1 unit of work

8. if (text[i+j] != pattern[j]) break;

9. } // for (j = ...)

10. if (j == M) found = true; // found at offset i

11. }

12. return found;

13. }

 What is the complexity (work) of this algorithm?

10

COMP 322, Spring 2014 (V.Sarkar)

Parallel Algorithm for String Search
• Consider a parallel algorithm in which each i iteration is

spawned as a separate async task

• For this above algorithm (assuming N >> M)
—WORK ~ M*N,
—CPL ~ M
—Ideal Parallelism ~ N

• Big-O notation: We say that a cost function Cost(n) is
“order f(n)”, or simply “O(f (n))” (read “Big-O of f (n))”) if
—Cost(n) < factor * f (n), for sufficiently large n, for some constant

factor

• If we consider M to be a constant in the String Search
example then WORK = O(N), CPL = O(1), and Ideal
Parallelism = O(N)

11

COMP 322, Spring 2014 (V.Sarkar)

Course Announcements
• All Unit 1 lecture and demonstration quizzes are due by Jan 24th

—Quizzes are still being uploaded into edX (see schedule on wiki)

• Homework 1 will be assigned on Jan 17th, and will be due on Jan
31st

• We will begin including programming exercises as in-class
activities starting Jan 17th
—Please bring laptops to class with HJlib set up for the exercises.

Laptops can be shared within groups.

• Next week’s schedule (Jan 20-24)
—No lecture on Monday (MLK Jr Day)
—No lab next week on Monday or Wednesday
—We will have lectures on Wednesday & Friday as usual

12

