
COMP 322: Fundamentals of
Parallel Programming

Lecture 27: Parallel Design Patterns,
Safety and Liveness Patterns

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 28 31 March 2014

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #27 solution: use of tryLock()
Extend the transferFunds() method from Lecture 26 (shown below) to use j.u.c.
locks with tryLock() instead of synchronized, and to return a boolean value --- true
if it succeeds in obtaining in obtaining both locks and performing the transfer, and
false otherwise. Assume that each Account object contains a reference to a
dedicated ReentrantLock object. Sketch your answer below using pseudocode.
Can you create a deadlock with multiple calls to transferFunds() in parallel?

1. public boolean transferFunds(Account from, Account to,
2. int amount) {
3. // Assume that each Account object has a lock field of
4. // a type/class that implements java.util.concurrent.locks.Lock
5. // Assume that no exception can be thrown in this code
6. // Calls to this method can never lead to a deadlock
7. if (! from.lock.trylock()) return false;
8. if (! to.lock.trylock()) { from.lock.unlock(); return false; }
9. from.subtractFromBalance(amount); to.addToBalance(amount);
10. // NOTE: unlock() should be in try-catch-finally for robustness
11. from.lock.unlock(); to.lock.unlock();
12. return true;
13. }

2

COMP 322, Spring 2014 (V.Sarkar)3

Design Patterns = formal discipline of design
• Christopher Alexander’s approach to (civil)

architecture:
– A design pattern “describes a problem which

occurs over and over again in our environment,
and then describes the core of the solution to
that problem, in such a way that you can use this
solution a million times over, without ever doing
it the same way twice.” Page x, A Pattern
Language, Christopher Alexander, 1977

• A pattern language is an organized way of
tackling an architectural problem using
patterns

• The Design Patterns book turned object
oriented design from an “art” to a
systematic design discipline.

COMP 322, Spring 2014 (V.Sarkar)4

Example of OO Design Pattern: Visitor
1. class Employee {

2. private int vacationDays; private String SSN;

3. public void accept(Visitor v) { v.visit(this); }

4. . . .

5. }

6. abstract class Visitor {

7. public abstract void visit(Employee emp);

8. }

9. class VacationVisitor extends Visitor {

10. private int totalDays;

11. public VacationVisitor() { total_days = 0; }

12. public void visit(Employee emp) {

13. totalDays += emp.getVacationDays();

14. }

15. public int getTotalDays() { return totalDays; }

16.}

17.. . .

18.VacationVisitor v = new VacationVisitor();

19.emp1.accept(v); emp2.accept(v); ...

20.... v.getTotalDays() ...

21.

COMP 322, Spring 2014 (V.Sarkar)

Patterns in Parallel Programming
• Can a pattern language/taxonomy providing guidance for the entire

development process make parallel programming easier?
—Need to identify basic patterns, along with refinements (usually for

efficiency)
—By relating HJ constructs to parallel programming patterns, you can

apply HJ concepts to any parallel programming model you encounter
in the future

• Algorithmic Patterns
—Selection of task and data decompositions to solve a given problem in

parallel
– Task decomposition = identification of parallel steps
– Data decomposition = partitioning of data into task-local vs.

shared storage classes
—Examples: Parallel Loops, Parallel Tasks, Reductions, Dataflow,

Pipeline

•
5

COMP 322, Spring 2014 (V.Sarkar)

Selecting the Right Pattern
(adapted from page 9, Parallel Programming w/ Microsoft .Net)

6

Application characteristics Algorithmic pattern Relevant HJ constructs

Sequential loop with
independent iterations

1) Parallel Loop forall, forasync

Independent operations with
well-defined control flow

2) Parallel Task async, finish

Aggregating data from
independent tasks/iterations

3) Parallel Aggregation
(reductions)

finish accumulators

Ordering of steps based on data
flow constraints

4) Futures futures, data-driven tasks

Divide-and-conquer algorithms
with recursive data structures

5) Dynamic Task
Parallelism

async, finish

Repetitive operations on data
streams

6) Pipelines phasers, actors

COMP 322, Spring 2014 (V.Sarkar)

How to select parallel constructs in general?
1. Think of how to decompose your program into tasks

 ⇒ async, future
2. Think of how to synchronize task creation and termination

 ⇒ finish, future-get, async-await
3. Think of where multiple tasks need to operate on shared data

 ⇒ Deterministic sharing: finish accumulators
 ⇒ Nondeterministic sharing: atomic variables, isolated, actors

4. Think of how to make your program more efficient
 ⇒ Recursive tasks: seq clause
 ⇒ Parallel loops: iteration grouping (chunking)
 ⇒ SPMD model: replace synchronizations in #2 by barriers/phasers
 ⇒ Isolated: use of atomic variables or object-based isolation

5. Think of when you need lower-level control beyond HJ-lib (should be rare)
 ⇒ Time-outs: Java threads and locks
 ⇒ Advanced locking: Java locks with tryLock()

7

COMP 322, Spring 2014 (V.Sarkar)

Safety vs. Liveness

• In a concurrent setting, we need to specify both the safety
and the liveness properties of an object

• Need a way to define
—Safety: when an implementation is functionally correct (does not

produce a wrong answer)
—Liveness: the conditions under which it guarantees progress

(completes execution successfully)

• Data race freedom is a desirable safety property for most
parallel programs

• Linearizability is a desirable safety property for most
concurrent objects

8

COMP 322, Spring 2014 (V.Sarkar)

Liveness

• Liveness = a program’s ability to make progress in a
timely manner

• Is termination a requirement for liveness?

• But some applications are designed to be non-
terminating

• Different levels of liveness guarantees (from weaker to
stronger)
1.Deadlock freedom
2.Livelock freedom
3.Starvation freedom
4.Bounded wait

9

COMP 322, Spring 2014 (V.Sarkar)

Terminating Parallel Program Executions
• A parallel program execution is terminating if all sequential tasks in the program

terminate

• Example of a nondeterministic data-race-free program with a nonterminating
execution

1. p.x = false;

2. finish {

3. async { // S1

4. boolean b = false; do { isolated b = p.x; } while (! b);

5. }

6. isolated p.x = true; // S2

7. } // finish

• Some executions of this program may be terminating, and some not

• Cannot assume in general that statement S2 will ever get a chance to execute if
async S1 is nonterminating e.g., consider case when program is run with one worker

10

COMP 322, Spring 2014 (V.Sarkar)

1. Deadlock-Free Parallel Program
Executions

• A parallel program execution is deadlock-free if no task’s execution remains
incomplete due to it being blocked awaiting some condition

• Example of a program with a deadlocking execution

 DataDrivenFuture left = new DataDrivenFuture();

 DataDrivenFuture right = new DataDrivenFuture();

 finish {

 async await (left) right.put(rightBuilder()); // Task1

 async await (right) left.put(leftBuilder()); // Task2

 }

• In this case, Task1 and Task2 are in a deadlock cycle.
– Three constructs that can lead to deadlock in HJ: async await, finish +

actors, explicit phaser wait (instead of next)

—There are many mechanisms that can lead to deadlock cycles in other
programming models (e.g., thread join, synchronized, locks in Java)

11

COMP 322, Spring 2014 (V.Sarkar)

2. Livelock-Free Parallel Program
Executions

• A parallel program execution exhibits livelock if two or more tasks
repeat the same interactions without making any progress (special case
of nontermination)

• Livelock example:
// Task 1
incrToTwo(AtomicInteger ai) {
 // increment ai till it reaches 2
 while (ai.incrementAndGet() < 2);
}

• Many well-intended approaches to avoid deadlock result in livelock
instead

• Any data-race-free HJ program without isolated/atomic-variables/
actors is guaranteed to be livelock-free (may be nonterminating in a
single task, however)

// Task 2
decrToNegativeTwo(AtomicInteger ai) {
 // decrement ai till it reaches -2
 while (a.decrementAndGet() > -2);
}

12

COMP 322, Spring 2014 (V.Sarkar)

3. Starvation-Free Parallel Program
Executions

• A parallel program execution exhibits starvation if some task is
repeatedly denied the opportunity to make progress
—Starvation-freedom is sometimes referred to as “lock-out freedom”
—Starvation is possible in HJ programs, since all tasks in the same

program are assumed to be cooperating, rather than competing
– If starvation occurs in a deadlock-free HJ program, the

“equivalent” sequential program must be non-terminating

• Classic source of starvation: “Priority Inversion” problem for OS
threads
—Thread A is at high priority, waiting for result or resource from

Thread C at low priority
—Thread B at intermediate priority is CPU-bound
—Thread C never runs, hence thread A never runs
—Fix: when a high priority thread waits for a low priority thread,

boost the priority of the low-priority thread

13

COMP 322, Spring 2014 (V.Sarkar)

Related Concepts: Progress Condition
• A resource is said to be obstruction-free if it is deadlock-free

• A resource is said to be lock-free if it is livelock-free and
deadlock-free

• A resource is said to be wait-free if it is starvation-free,
livelock-free, and deadlock-free

• Question: how to bound the wait duration?

14

COMP 322, Spring 2014 (V.Sarkar)

4. Bounded Wait
• A parallel program execution exhibits bounded wait if each task

requesting a resource should only have to wait for a bounded
number of other tasks to “cut in line” i.e., to gain access to the
resource after its request has been registered.

• If bound = 0, then the program execution is fair

15

COMP 322, Spring 2014 (V.Sarkar)16

A metaphor for Bounded Wait

• Progress?
—If no process is
waiting in its critical
section and several
processes are trying
to get into their
critical section, then
entry to the critical
section cannot be
postponed
indefinitely

• Bounded Wait
—A process

requesting access
to a resource
should only have to
wait for a bounded
number of other
processes to
access the resource
that requested
access after it

A “cut-through” could cause
unbounded wait for folks in the loop!

COMP 322, Spring 2014 (V.Sarkar)

Worksheet #28:
Liveness Guarantees

 /** Atomically adds delta to the current value.
1. *
2. * @param delta the value to add
3. * @return the previous value
4. */
5. public final int getAndAdd(int delta) {
6. for (;;) {
7. int current = get();
8. int next = current + delta;
9. if (compareAndSet(current, next))
10. // commit
11. return current;
12. }
13. }
Assume that multiple tasks call getAndAdd() repeatedly in parallel. Can this
implementation of getAndAdd() lead to a) deadlock, b) livelock, c) starvation,
or d) unbounded wait? Write and explain your answer below

17

Name: ___________________ Netid: ___________________

