
COMP 322: Fundamentals of
Parallel Programming

Lecture 36: Comparison of Parallel Programming
Models (OpenMP, X10)

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 36 21 April 2014

COMP 322, Spring 2014 (V.Sarkar)2

Worksheet #35 solution: Double Checked Locking
Idiom in Java

Consider two threads calling the getHelper() method in parallel:

1) Can you construct a possible data race if they call the unoptimized version of
getHelper() in lines 3-8?
 No race possible (monitor-based synchronization)

2) Can you construct a possible data race if they call the optimized version of
getHelper() in lines 12-21?
 Yes, thread T1 can assign helper in line 16 while thread T2 reads helper in line
13

3) How will your answer to 2) change if the helper field in line 11 was declared as
volatile?
 No data race since volatile declaration causes read and write of helper to be
(semantically) enclosed in isolated blocks

COMP 322, Spring 2014 (V.Sarkar)3

Worksheet #35 (contd)
1. class Foo { //unoptimized version

2. private Helper helper; // Singleton pattern

3. public synchronized Helper getHelper() {

4. if (helper == null) {

5. helper = new Helper();

6. }

7. return helper;

8. }

9. . . .

10.class Foo { //Optimized version

11. private Helper helper; // Singleton pattern

12. public Helper getHelper() {

13. if (helper == null) {

14. synchronized(this) {

15. if (helper == null) {

16. helper = new Helper();

17. }

18. }

19. }

20. return helper;

21. }

22. . . .

COMP 322, Spring 2014 (V.Sarkar)

Acknowledgments
• Slides from COMP 422 course at Rice University

—http://www.clear.rice.edu/comp422/

• Slides from OpenMP tutorial given by Ruud van der Paas at HPCC 2007

— http://www.tlc2.uh.edu/hpcc07/Schedule/OpenMP

• “Towards OpenMP 3.0”, Larry Meadows, HPCC 2007 presentation
—http://www.tlc2.uh.edu/hpcc07/Schedule/speakers/hpcc07_Larry.ppt

• APGAS Programming in X10 tutorial given by Olivier Tardieu at the
Hartree Centre Summer School "Programming for Petascale" in July
2013.

4

COMP 322, Spring 2014 (V.Sarkar)

Middleware

Compilers

System Libraries

OS and Hypervisors

Programming

Runtime Systems

Domain-Specific Langs.

Application

Parallel Programming is a Cross-Cutting
Concern

Application
Developers

Infrastructure
Developers

System
Programmers

Software Stack

Developer Pyramid (not drawn to scale!)

Parallel
Programming

5

COMP 322, Spring 2014 (V.Sarkar)

Middleware

Compilers

System Libraries

OS and Hypervisors

Programming

Runtime Systems

Domain-Specific Langs.

Application

Different Parallel Programming Models for different
Levels of Developer Pyramid and Software Stack

Application
Developers

Infrastructure
Developers

System
Programmers

Software Stack

LabView

Chapel, X10,
UPC, CAF

Habanero-Java
Habanero-C

OpenMP

CUDA

MPI

OpenCL
Pthreads

6

Matlab

Java threads

SciPy,NumPy

COMP 322, Spring 2014 (V.Sarkar)

What is OpenMP?
• Well-established standard for writing shared-memory parallel

programs in C, C++ Fortran
• Open implementation available in gcc
• Proprietary implementations available from vendors

• Programming model is expressed via
—Pragmas/directives (not language extensions)
—Runtime routines
—Environment variables

—Specification maintained by the OpenMP Architecture Review Board
(http://www.openmp.org)

—Latest specification: Version 4.0 (July 2013)

7

COMP 322, Spring 2014 (V.Sarkar)

A first OpenMP example

8

OpenMP parallel for loop is
like a forall loop in HJ

COMP 322, Spring 2014 (V.Sarkar)

The OpenMP Execution Model

9

COMP 322, Spring 2014 (V.Sarkar)

Terminology

10

(builds on SPMD model)

COMP 322, Spring 2014 (V.Sarkar)

Parallel Region

A parallel region is a block of code executed by multiple threads
simultaneously in SPMD mode, and supports the following clauses:

11

COMP 322, Spring 2014 (V.Sarkar)

Work-sharing constructs in a Parallel Region

• The work is distributed over the threads
• Must be enclosed in a parallel region
• Must be encountered by all threads in the team,
or none at all
• No implied barrier on entry; implied barrier on
exit (unless nowait is specified)
• A work-sharing construct does not launch any new
threads
• Shorthand syntax supported for parallel region
with single work-sharing construct e.g.,

12

COMP 322, Spring 2014 (V.Sarkar)

Legality constraints for work-sharing
constructs

• Each worksharing region must be encountered by all threads in a team or
by none at all.

• The sequence of worksharing regions and barrier regions encountered
must be the same for every thread in a team.

#pragma omp parallel
{
 do {
 // c1 and c2 may depend on the OpenMP thread-id
 boolean c1 = … ; boolean c2 = … ;
 . . .
 if (c2) {
 // Start of work-sharing region with no wait clause
 #pragma omp …
 . . . // Worksharing statement
 } // if (c2)
 } while (! c1);
}

==> No OpenMP implementation checks for conformance with this rule (unlike HJ’s
runtime check for phaser single statements)

13

COMP 322, Spring 2014 (V.Sarkar)

Example of work-sharing “omp for” loop

14

Implicit finish

Like HJ’s forasync

Like HJ’s forasync

COMP 322, Spring 2014 (V.Sarkar)

task Construct

#pragma omp task [clause[[,]clause] ...]
 structured-block

if (expression)
untied
shared (list)
private (list)
firstprivate (list)
default(shared | none)

where clause can be one of:

15

COMP 322, Spring 2014 (V.Sarkar)

Example – parallel pointer chasing using tasks

1.#pragma omp parallel
2.{
3. #pragma omp single
4. {
5. Node p = listhead ;
6. while (p) {
7. #pragma omp task
8. process (p);
9. p= p->next ;
10. }
11. }
12.}

Spawn call to process(p)

Implicit finish at end of parallel region

16

COMP 322, Spring 2014 (V.Sarkar)

Parallel pointer chasing example in HJlib

1.finish(()-> {
2. Node p = listhead ;
3. while (p != null) {
4. final Node pp = p;
5. async(()->{ process(p); });
6. p= p->next ;
7. }
8. }
9.}

Spawn call to process(p)

17

COMP 322, Spring 2014 (V.Sarkar)

Summary of key features in OpenMP
OpenMP construct Related HJ/Java constructs

Parallel region
#pragma omp parallel

HJ forall (forall iteration = OpenMP thread)

Work-sharing constructs:
parallel loops, parallel sections No direct analogy in HJ or Java

Barrier
#pragma omp barrier

HJ forall-next on implicit phaser

Single
#pragma omp single

HJ’s forall-next-single on implicit phaser
(but HJ does not support single + nowait)

Reduction clauses HJ’s finish accumulators (in forall)

Critical section
#pragma omp critical

HJ’s isolated statement

Task creation
#pragma omp task

HJ’s async statement

Task termination
#pragma omp taskwait

HJ’s finish statement

18

COMP 322, Spring 2014 (V.Sarkar)

What is X10?
— Open-source parallel programming language led by IBM Research

—Habanero-Java was built on early version of X10 from 2007
—“Habanero-Java: the New Adventures of Old X10”. Vincent Cave,

Jisheng Zhao, Jun Shirako, Vivek Sarkar. 9th International
Conference on the Principles and Practice of Programming in Java
(PPPJ), August 2011.

—Integrates HJ-style task parallelism and UPC-style PGAS concepts
in a new language with Scala-like syntax

—Includes an Eclipse-based IDE (X10DT)

—For more details, see http://x10-lang.org

19

Place-shifting operations
• at(p) S
• at(p) e

… …… …

Activities

Local�
Heap

Place�0

……
…

Activities

Local�
Heap

Place�N

…

Global�Reference

Distributed heap
• GlobalRef[T]
• PlaceLocalHandle[T]

APGAS in X10: Places and Tasks

Task parallelism
• async S

• finish S

Concurrency control within a place
• when(c) S
• atomic S

11

APGAS Idioms

�

Remote evaluation
v = at(p) evalThere(arg1, arg2);

�

Active message
at(p) async runThere(arg1, arg2);

�

Recursive parallel decomposition
def fib(n:Long):Long {

if(n < 2) return n;
val f1:Long;
val f2:Long;
finish {

async f1 = fib(n-1);
f2 = fib(n-2);

}
return f1 + f2;

}

�

SPMD
finish for(p in Place.places()) {
at(p) async runEverywhere();

}

�

Atomic remote update
at(ref) async atomic ref() += v;

�

Data exchange
// swap l() local and r() remote
val _l = l();
finish at(r) async {

val _r = r();
r() = _l;
at(l) async l() = _r;

}

12

Task Parallelism: async and finish

�

async S
�

creates a new task that executes S
�

returns immediately
�

S may reference values in scope
�

S may initialize values declared above the enclosing finish

�

S may reference variables declared above the enclosing finish
�

tasks cannot be named or cancelled

�

finish S
�

executes S
�

then waits until all transitively spawned tasks in S have terminated
�

rooted exception model
�

trap all exceptions and throw a multi-exception if any spawned task terminates abnormally
�

exception is thrown after all tasks have completed

�

collecting finish combines finish with reduction over values offered by subtasks

27

Concurrency Control: atomic and when

�

atomic S
�

executes statement S atomically
�

atomic blocks are conceptually executed in a serialized order with respect to all other atomic
blocks in a place (weak atomicity)

�

S must be non-blocking, sequential, and local
�

no when, at, async

�

when(c) S
�

the current task suspends until a state is reached where c is true
�

in that state, S is executed atomically
�

Boolean expression c must be non-blocking, sequential, local, and pure
�

no when, at, async, no side effects

�

Gotcha: S in when(c) S is not guaranteed to execute
�

if c is not set to true within an atomic block
�

or if c oscillates

30

Examples

class Account {
public var value:Int;

def transfer(src:Account, v:Int) {
atomic {

src.value -= v;
this.value += v;

}
}

}

class Latch {
private var b:Boolean = false;
def release() { atomic b = true; }
def await() { when(b); }

}

class Buffer[T]{T isref,T haszero} {
protected var datum:T = null;

public def send(v:T){v!=null} {
when(datum == null) {
datum = v;

}
}

public def receive() {
when(datum != null) {

val v = datum;
datum = null;
return v;

}
}

}

31

Clocks

APGAS barriers
�synchronize dynamic sets of tasks

x10.lang.Clock
�anonymous or named
�task instantiating the clock is
registered with the clock
�spawned tasks can be registered with
a clock at creation time
�tasks can deregister from the clock
�tasks can use multiple clocks
�split-phase clocks
�

clock.resume(), clock.advance()
�compatible with distribution

// anonymous clock
clocked finish {

for(1..4) clocked async {
Console.OUT.println("Phase 1");
Clock.advanceAll();
Console.OUT.println("Phase 2");

}
}
// named clock
finish {

val c = Clock.make();
for(1..4) async clocked(c) {
Console.OUT.println("Phase 3");
c.advance();
Console.OUT.println("Phase 4");

}
c.drop();

}

33

Sequential Monte Carlo Pi

package examples;
import x10.util.Random;

public class SeqPi {
public static def main(args:Rail[String]) {

val N = Int.parse(args(0));
var result:Double = 0;
val rand = new Random();
for(1..N) {
val x = rand.nextDouble();
val y = rand.nextDouble();
if(x*x + y*y <= 1) result++;

}
val pi = 4*result/N;
Console.OUT.println("The value of pi is " + pi);

}
}

35

Parallel Monte Carlo Pi with Atomic

public class ParPi {
public static def main(args:Rail[String]) {

val N = Int.parse(args(0)); val P = Int.parse(args(1));
var result:Double = 0;
finish for(1..P) async {

val myRand = new Random();
var myResult:Double = 0;
for(1..(N/P)) {

val x = myRand.nextDouble();
val y = myRand.nextDouble();
if(x*x + y*y <= 1) myResult++;

}
atomic result += myResult;

}
val pi = 4*result/N;
Console.OUT.println("The value of pi is " + pi);

}
}

36

Parallel Monte Carlo Pi with Collecting Finish

public class CollectPi {
public static def main(args:Rail[String]) {

val N = Int.parse(args(0)); val P = Int.parse(args(1));
val result = finish(Reducible.SumReducer[Double]()) {

for(1..P) async {
val myRand = new Random();
var myResult:Double = 0;
for(1..(N/P)) {

val x = myRand.nextDouble();
val y = myRand.nextDouble();
if(x*x + y*y <= 1) myResult++;

}
offer myResult;

}
};
val pi = 4*result/N;
Console.OUT.println("The value of pi is " + pi);

}
}

37

Distribution: Places

An X10 application runs with a fixed number of places decided at launch time

x10.lang.Place
�The available places are numbered from 0 to Place.MAX_PLACES-1
�for(p in Place.places()) iterates over all the available places
�here always evaluates to the current place
�Place(n) is the nth place
�If p is a place then p.id is the index of place p
�Each place has its own copy of static variables
�Static variables are initialized per place and per variable at the first access

The main method is invoked at place Place(0)
Other places are initially idle

X10 programs are typically parametric in the number of places
44

Distribution: at

A task can “shift” place using at
�at(p) S
�

executes statement S at place p
�

current task is blocked until S completes
�

S may spawn async tasks
�

at does not wait for these tasks
�

the enclosing finish does

�at(p) e
�

evaluates expression e at place p and returns the computed value

�at(p) async S
�

creates a task at place p to run S
�

returns immediately

45

HelloWholeWorld.x10

class HelloWholeWorld {
public static def main(args:Rail[String]) {
finish

for(p in Place.places())
at(p) async

Console.OUT.println(p + “ says “ + args(0));
Console.OUT.println(“Bye”);

}
}

$ x10c++ HelloWholeWorld.x10
$ X10_NPLACES=4 ./a.out hello
Place(0) says hello
Place(2) says hello
Place(3) says hello
Place(1) says hello
Bye

46

Distributed Object Model

�

Objects live in a single place
�

an object belong to the place of the task that constructed the object
�

objects can only be accessed in the place where they live
�

tasks must shift place accordingly

�

Object references are always local
�

rail:Rail[Int] refers to a rail in the current place (if not null)

�

Global references (possibly remote) have to be constructed explicitly
�

val ref:GlobalRef[Rail[Int]] = GlobalRef(rail);

�

Global references can only be dereferenced at the place of origin “home”
�

at(ref.home) Console.OUT.println(ref());
�

at(ref) Console.OUT.println(ref()); // shorthand syntax
�

ref as GlobalRef[T]{self.home==here} // place cast

47

Distributed Monte Carlo Pi with Atomic and GlobalRef

public class DistPi {
public static def main(args:Rail[String]) {

val N = Int.parse(args(0));
val result = GlobalRef[Cell[Double]](new Cell[Double](0));
finish for(p in Place.places()) at(p) async {

val myRand = new Random();
var myResult:Double = 0;
for(1..(N/Place.MAX_PLACES)) {

val x = myRand.nextDouble();
val y = myRand.nextDouble();
if(x*x + y*y <= 1) myResult++;

}
val myFinalResult = myResult;
at(result) async atomic result()() += myFinalResult;

}
val pi = 4*result()()/N;
Console.OUT.println("The value of pi is " + pi);

}
}

55

Distributed Monte Carlo Pi with Collecting Finish

public class MontyPi {
public static def main(args:Rail[String]) {

val N = Int.parse(args(0));
val result = finish(Reducible.SumReducer[Double]()) {

for(p in Place.places()) at(p) async {
val myRand = new Random();
var myResult:Double = 0;
for(1..(N/Place.MAX_PLACES)) {

val x = myRand.nextDouble();
val y = myRand.nextDouble();
if(x*x + y*y <= 1) myResult++;

}
offer myResult;

}
};
val pi = 4*result/N;
Console.OUT.println("The value of pi is " + pi);

}
}

57

Final Thoughts

�

X10 Approach
�

Augment full-fledged modern language with core APGAS constructs
�

Enable programmer to evolve code from prototype to scalable solution

�

Problem selection: do a few key things well, defer many others
�

Mostly a pragmatic/conservative language design (except when it is not)

�

X10 2.4 (today) is not the end of the story
�

A base language in which to build higher-level frameworks
(Global Matrix Library, Main-Memory Map Reduce, ScaleGraph)

�

A target language for compilers (MatLab, stencil DSLs)

�

APGAS runtime: X10 runtime as Java and C++ libraries
�

APGAS programming model in other languages

88

COMP 322, Spring 2014 (V.Sarkar)

Announcements
• Graded midterms can be picked up from Melissa Cisneros in Duncan

Hall room 3122 (mcisnero@rice.edu)

• Homework 5 due by 11:55pm today
—Send email to comp322-staff@rice.edu if you plan to use slip days
—Two more slip days were added for a total of 5 slip days for the semester

• Homework 6 due by 11:55pm on April 25th, penalty-free extension till
May 2nd
—Slip days can be applied past May 2nd

• No lab this week

• No class on April 23rd
—Use the time to complete your homeworks!

• April 25th is last day of classes
—Take-home Exam 2 will be handed out on April 25th, due by May 2nd

– Will cover lectures 19 - 35

36

COMP 322, Spring 2014 (V.Sarkar)37

Worksheet #36: Parallel Programming Constructs

Which of the following HJ constructs do you like the most? Which one do you like the least? Why?

async, finish, futures, isolated, accumulators, forall, barriers, data-driven tasks/futures, phasers, isolated,
object-based isolation, actors , places

Name: ___________________ Netid: ___________________

