
COMP 322: Fundamentals of
Parallel Programming

Lecture 4: Abstract Performance Metrics,
Parallel Array Sum, Amdahl’s Law

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 4 22 January 2014

COMP 322, Spring 2014 (V.Sarkar)2

Abstract Performance Metrics
• Basic Idea

—Count operations of interest, as in big-O analysis
—Abstraction ignores overheads that occur on real systems

• Calls to doWork()
—Programmer inserts calls of the form, doWork(N), within a step

to indicate abstraction execution of N application-specific
abstract operations
– e.g., adds, compares, stencil ops, data structure ops

—Multiple calls dynamically add to the execution time of current
step in computation graph

• Abstract metrics are enabled by calling
—System.setProperty(HjSystemProperty.abstractMetrics.

propertyKey(), "true");
• If an HJlib program is executed with this option, abstract

metrics are printed at end of program execution with
WORK(G), CPL(G), Ideal Parallelism = WORK(G)/ CPL(G)

COMP 322, Spring 2014 (V.Sarkar)

Parallel Speedup

• Define Speedup(P) = T1 / TP

—Factor by which the use of P processors speeds
up execution time relative to 1 processor, for a
fixed input size

—For ideal executions without overhead, 1 <=
Speedup(P) <= P

—Linear speedup
– When Speedup(P) = k*P, for some constant k,

0 < k < 1

• Ideal Parallelism = Parallel Speedup on an
unbounded number of processors

3

COMP 322, Spring 2014 (V.Sarkar)4

Reduction Tree Schema for computing
Array Sum in parallel

Assume input array size = S, and each add takes 1 unit of time:

• WORK(G) = S-1

• CPL(G) = log2(S)

• Estimate TP = WORK(G)/P + CPL(G) = (S-1)/P + log2(S)

• Within a factor of 2 of any schedule’s execution time

COMP 322, Spring 2014 (V.Sarkar)

How many processors should we use?
• Define Efficiency(P) = Speedup(P)/ P = T1/(P * TP)

—Processor efficiency --- figure of merit that indicates how well a
parallel program uses available processors

—For ideal executions without overhead, 1/P <= Efficiency(P) <= 1

• Half-performance metric
—S1/2 = input size that achieves Efficiency(P) = 0.5 for a given P
—Figure of merit that indicates how large an input size is needed to

obtain efficient parallelism
—A larger value of S1/2 indicates that the problem is harder to

parallelize efficiently

• How many processors to use?
—Common goal: choose number of processors, P for a given input size,

S, so that efficiency is at least 0.5

5

COMP 322, Spring 2014 (V.Sarkar)6

ArraySum: Speedup as function of array size,
S, and number of processors, P

• Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))

• Asymptotically, Speedup(S,P) --> S/log2S, as P --> infinity

P

Speedup(S,P)

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Speedup"(N=1024)" Speedup"(N=2048)"

COMP 322, Spring 2014 (V.Sarkar)7

Amdahl’s Law [1967]
• If q ≤ 1 is the fraction of WORK in a parallel program that must be

executed sequentially for a given input size S, then the best speedup
that can be obtained for that program is Speedup(S,P) ≤ 1/q.

• Observation follows directly from critical path length lower bound on
parallel execution time
— CPL >= q * T(S,1)
— T(S,P) >= q * T(S,1)
— Speedup(S,P) = T(S,1)/T(S,P) <= 1/q

• This upper bound on speedup simplistically assumes that work in program
can be divided into sequential and parallel portions
— Sequential portion of WORK = q

– also denoted as fS (fraction of sequential work)

— Parallel portion of WORK = 1-q

– also denoted as fp (fraction of parallel work)

• Computation graph is more general and takes dependences into account

COMP 322, Spring 2014 (V.Sarkar)8

Illustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion

Figure source: http://en.wikipedia.org/wiki/Amdahl’s law

(log scale)

