COMP 322: Fundamentals of
Parallel Programming

Lecture 17: Pipeline Parallelism,
Signal Statement, Fuzzy Barriers

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

Contact email: vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
COMP 322 Lecture 17 20 February 2015

Solution to Worksheet #16:
Left-Right Neighbor Synchronization using Phasers

i=1 =2 =3 =4 =5 i=6 =7 =8
doPhasel(l) © © © © ©@ © © ©

PSP P AP AP P bt

doPhase2() @ © @ © © © © ©

Complete the phased clause below to implement the left-right neighbor
synchronization shown above.

1. finish (() -> {

2, final HjPhaser[] ph =
new HjPhaser[m+2]; // array of phaser objects
3. forseq(0, m+1l, (i) -> { ph[i] = newPhaser (SIG _WAIT) });
4. forseq(l, m, (i) -> {
5. asyncPhased (

ph[i-1].inMode (WAIT),
ph[i] .inMode (SIG),
ph[i+1l].inMode (WAIT), () -> {
doPhasel (i) ;
next();
doPhase2(i); }); // asyncPhased
}); // forseq
0.}); // finish

= O 00 d O

2 COMP 322, Spring 2015 (V.Sarkar, E.Allen) %,

Left-Right Neighbor Synchronization
(restricted to m=3)

£finish(() -> { // Task-0
final HjPhaser phl

—

newPhaser (SIG_WAIT);
final HjPhaser ph2 newPhaser (SIG_WAIT);
final HjPhaser ph3 newPhaser (SIG_WAIT);
asyncPhased (phl.inMode (SIG),ph2.inMode (WAIT),
() -> { doPhasel(1l);
next(); // signals phl, waits on ph2
doPhase2(1);
}); // Task T1
asyncPhased (ph2.inMode (SIG) ,phl.inMode (WAIT),ph3.inMode (WAIT),
() -> { doPhasel(2);
next(); // signals ph2, waits on ph3
doPhase2(2);
}); // Task T2
asyncPhased (ph3.inMode (SIG),ph2.inMode (WAIT),
() -> { doPhasel(3);
next(); // signals ph3, waits on ph2
doPhase2(3);
19. }); // Task T3
20.}); // finish

= b)) e
BNGGRORNROOPNTIRLD

3 COMP 322, Spring 2015 (V.Sarkar, E.Allen) %,

Computation Graph for m=3 example
(without async-finish nodes and edges)

v

6 — | 7-signal

7-wait —*| 8

< A
P2 s
phl.next phl.next |
-start(0~>1) -end(0>1)|
ph2.next | ph2.next | .
-start(0->1) -end(0>1)]| ™.
- - ’7 “"“ "4
11 —| 12-signal N 12-wait —| 13
ph3.next ph3.next | .
-start(0->1) -end(0->1)
Af”i ;‘4
16 —| 17-signal ' 17-wait —| 18
continue signal wait
_) >

4 COMP 322, Spring 2015 (V.Sarkar, E.Allen) @

h

v

Computation Graph for m=3 example
(with async-finish nodes and edges)
1,2,3,4 | 20-drop | 20-end-finis
= 7-wait ——{8| |
- 'f, I,'

7 -signal
\\

\\A_L¢”’
phl.next phl.next
-start(0~>1) -end(0>1)| ™., .
\\A ‘ o
ph2.next | ph2.next | . ,
-start(0->1) -end(0>1) | -, !
e ’7 “"“ "4 III
12-signal N 12-wait —| 13
ph3.next ph3.next | . =,
-end(0~>1)
e
N 17-wait —

--------- 7 -start(0->1)
a”i

17 -signal

continue
—
COMP 322, Spring 2015 (V.Sarkar, E.Allen)

<D

Medical |mag|ng plpellne SC

* New reconstruction methods
— decrease radiation exposure (CT)
— number of samples (MR)
« 3D/4D image analysis pipeline
— Denoising
— Registration
— Segmentation
* Analysis
— Real-time quantitative cancer
assessment applications

 Potential:

— order-of-magnitude performance
improvement

— power efficiency improvements

— real-time clinical applications and
3imu|ations using patient imaging
ata

reconstruction

denoising

c
L
—

©
=
i

(@)

o

—

segmentation

Slide credit: NSF Expeditions Center for Domain-Specific Computing (UCLA, Rice, OSU, UCSB)

Pipeline Parallelism: Another Example
of Point-to-point Svynchronization

DENOISE — REGISTER —>{ SEGMENT

* Medical imaging pipeline with three stages
1. Denoising stage generates a sequence of results, one per
image.
2. Registration stage’s input is Denoising stage’s output.
3. Segmentation stage’s input is Registration stage’s output.
« Even though the processing is sequential for a single image,

pipeline parallelism can be exploited via point-to-point
synchronization between neighboring stages

7 COMP 322, Spring 2015 (V.Sarkar, E.Allen)

General structure of a One-Dimensional
Pipeline

Input sequence

d9d8d7d6d5d4d3d2d1d0 > PO - Pl > P2 i P3 - P4 - P5 - P6 - P7 - P8 > P9

« Assuming that the inputs d,, d,, . . . arrive sequentially, pipeline
parallelism can be exploited by enabling task (stage) P, to work on
item d,_, when task (stage) P, is working on item d,.

8 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Timing Diagram for One-Dimensional

-1
- P > € . >

A P9 d() dl d2 d3 d4 d5 d6
—_— /
2 Pg dy | dy | dy | d3 | dy | ds5 | dg | dy
T A

: . /
8 P Point-to-point dy"| dy | dy | d3 | dy | d5 | dg | d7 | dg
' o .
synchronization /

7 Pg Y dy | dy | dy | d3 | dy | ds | dg | d7 | dg | dg
(e} across stages s
g Ps dy | dy | dy | d3 | dy | ds | dg | d7|dg|dg
whd
2 P, do'| dy | dy | dy | dy | ds | dg | d7 | dg | dy
= P3 do | dy | dy | d3 | dyg | ds | dg | d7|dg|dg
o
Q Py do | dy | dy | d3 | dy | ds5 | dg| d7 | dg|dg
Q L]
o P dy | di | dy | d3 | dy | ds | dg | d7|dg| dy n data items

v Po dy | dy | dy | d3 | dyq | ds | dg | d7 | dg | dg

—>
Time

« Horizontal axis shows progress of time from left to right, and vertical axis
shows which data item is being processed by which pipeline stage at a
given time.

9 COMP 322, Spring 2015 (V.Sarkar, E.Allen) @

10

Complexity Analysis of
One-Dimensional Pipeline

Assume

—n = number of items in input sequence

— p = number of pipeline stages

— each stage takes 1 unit of time to process a single data item

WORK = nxp is the total work for all data items

CPL =n + p -1 is the critical path length of the pipeline
Ideal parallelism, PAR = WORK/CPL = np/(n + p = 1)
Boundary cases

—p=1=>PAR=n/(n+1-1)=1
—n=1=>PAR=p/(1+p-1)=1

—n=p=> PAR=pl(2 -1/p) = p/2

—n>p=2>PAR=p

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Producer-Consumer pattern with phasers
(used for implementing pipeline parallelism)

1. asyncPhased(ph.1nMode(SIG), (O -> {

2 for (int i = 0; 1 < rounds; i++) {
3 buffer.insert(.);

4 // producer can go ahead as they are in SIG mode
5. next();

6 }

7. 1);

8

9. asyncPhased(ph.1nMode(WAIT), () -> {
10. for (int 1 = 0; 1 < rounds; 1++) {
11. next();

12. buffer.removec(..);

13. }

14. });

11 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Signal statement & Fuzzy barriers

 When a task T performs a signal operation, it notifies all the phasers it is
registered on that it has completed all the work expected by other tasks
(“shared” work) in the current phase.

o Later, when T performs a next operation, the next degenerates to a wait since a
signal has already been performed in the current phase.

* The execution of “local work” between signal and next is overlapped with the
phase transition (referred to as a “split-phase barrier” or “fuzzy barrier”)

. forall (point[i] : [0:1]) { s‘(‘ii'g’)' ;‘i‘i’f

A(1); // Phase 0O

it (i==0) { signal; B(i); } @ @
next; // Barrier ext nex
C(1); // Phase 1 @ (i=0) (izl)

it (i==1) { b(1); }

1

2.
3.
4.
5.
6.
/.

12 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Another Example of a Split-Phase Barrier
using the Signal Statement

l.£inish(() -> {

final HjPhaser ph = newPhaser (SIG WAIT);
asyncPhased (ph.inMode (SIG WAIT), () -> { // Task T1

// Shared work in phase 0

// Signal completion of a's computation
// Local work in phase 0

// Barrier -- wait for T2 to compute x

b = f(b,x); // Use x computed by T2 in phase 0

2

3

4 a=...;
B. signal();
6. b=...;
7/ next();

8

9. b;

10. asyncPhased(ph.inMode(SIG WAIT), () -> { // Task T2

11. X = vo. 3

// Shared work in phase 0

12. signal(); // Signal completion of x's computation
13. VYV = oo 3 // Local work in phase 0

14, next(); // Barrier -- wait for Tl to compute a
15, y = £f(y,a); // Use a computed by Tl in phase 0

16. });

17.}); // finish

13 COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Computation Graph for Split-Phase Barrier Example
(without async-finish nodes and edges)

4— 5-signal —| 6 " 7-wait —| 8

\ ey 4

y e

ph.next | ph.next

-start(0>1) -end(0->1)

A .

Ill

/ A
11 " 12-signal —1 13 " 14-wait " 15

Spawg, continue signal wait o Join |

14 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Full Computation Graph for Split-Phase
Barrier Example (Fiqure 52)

—___| 20-drop—| 20-end-finish

,/
—
-
-

-
-
-
-
-
-
-
-
-
-
-
-
=

ya
° [§ 'Y < |
5-signal|— 6= " 7-wait ' 8
S ‘\ a”’ x"
\\ \\ ”’ o“‘
\\ \ ”’ “o
~o - .
S
S

“A| ph.next |__,| ph.next
-s1'ar41'(091) -end(0>1)| ©

// 4 ,
11— 12-signal[—| 13 " 14-wait —| 15
Spawg, continue signa| Wait Join |

15 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Announcements

« Take-home midterm exam (Exam 1) will be given after lecture on
Wednesday, February 25, 2015

— Closed-book, closed computer, written exam that can be taken in
any 2-hour duration during that period

— Will need to be returned to Bel Martinez (Duncan Hall 3122) by 4pm
on Friday, February 27, 2015

- Exam can also be picked up from Bel Martinez starting 2pm on
Feb 25th if you’re unable to attend lecture.

— No lecture on Friday, Feb 27th

« Homework 3 is due by by 5:00pm on Friday, March 13, 2015

— Programming assignment is more challenging than in previous
homeworks --- start early!

16 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Scope of Midterm Exam

« Midterm exam will cover material from Lectures 1 - 18
—Lecture 19 (Feb 25th) will be a Midterm review

« Excerpts from midterm exam instructions
—“closed-book, closed-notes, closed-computer”

—“Record start time when you open the exam, and end time when
you finish. The total duration must be at most 2 hours. ”

—“Since this is a written exam and not a programming assignment,
syntactic errors in program text will not be penalized (e.g., missing
semicolons, incorrect spelling of keywords, etc) so long as the
meaning of your solution is unambiguous.”

—“If you believe there is any ambiguity or inconsistency in a
question, you should state the ambiguity or inconsistency that you
see, as well as any assumptions that you make to resolve it.”

17 COMP 322, Spring 2015 (V.Sarkar, E.Allen) G

