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One Possible Solution to Worksheet 2 
(Reverse Engineering a Computation Graph)
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1.A(); 

2.finish { // F1 

3.  async D(); 

4.  B(); 

5.  async { 

6.    E(); 

7.    finish { // F2 

8.      async H(); 

9.       F(); 

10.   } // F2 

11.   G(); 

12.  } 

13. } // F1 

14. C();

Observations: 
• Any node with out-degree > 1 must be an 

async (must have an outgoing spawn edge) 
• Any node with in-degree  > 1 must be an end-

finish (must have an incoming join edge 
• Adding or removing transitive edges does not 

impact ordering constraints
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Dynamic Finish-Async nesting structure and 
Immediately Enclosing Finish (IEF)

• IEF(A3) = IEF(A4) = F2 

• IEF(A1) = IEF(A2) = F1 

• Module 1 handout: Listing 4 & Figure 6 (Section 1.1)
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Task A4 

finish 

async async 

Task A0 (Part 3) 

Task A0 (Part 2) 

finish 
Task A0 (Part 1) 

async 

Task A1 

async 

Task A2 
Task A3 

F2

F1
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Ideal Parallelism (Recap)

• Define ideal parallelism of 
Computation G Graph as the 
ratio, WORK(G)/CPL(G) 

• Ideal Parallelism is independent 
of the number of processors that 
the program executes on, and 
only depends on the computation 
graph
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Example: 
WORK(G) = 26 
CPL(G) = 11 
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36 
!
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Scheduling of a Computation Graph on a 
fixed number of processors: Example
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1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11 Completion time = 11
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NOTE: this schedule achieved a completion time of 11, 
which is the same as the CPL.  Can we do better?
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Scheduling of a Computation Graph on a 
fixed number of processors, P

• Assume that node N takes TIME(N) regardless of which 
processor it executes on, and that there is no overhead for 
creating parallel tasks 

• A schedule specifies the following for each node 
—START(N) = start time 
—PROC(N) = index of processor in range 1...P 

such that 
—START(i) + TIME(i) <= START(j), for all CG edges from i 
to j (Precedence constraint) 

—A node occupies consecutive time slots in a processor (Non-
preemption constraint) 

—All nodes assigned to the same processor occupy distinct 
time slots (Resource constraint)
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Greedy Schedule
• A greedy schedule is one that never forces a 
processor to be idle when one or more nodes are ready 
for execution  
• A node is ready for execution if all its predecessors 
have been executed 
• Observations 

—T1 = WORK(G), for all greedy schedules 
—T∞ = CPL(G), for all greedy schedules 

• where TP = execution time of a schedule for 
computation graph G on P processors 
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Lower Bounds on Execution Time of 
Schedules

• Let TP = execution time of a schedule for 
computation graph G on P processors 
—Can be different for different schedules 

• Lower bounds for all greedy schedules 
—Capacity bound: TP  ≥ WORK(G)/P 

—Critical path bound: TP  ≥ CPL(G) 

• Putting them together 
—TP  ≥ max(WORK(G)/P, CPL(G))
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Upper Bound on Execution Time of Greedy 
Schedules 

Proof sketch: 
Define a time step to be complete if 

≥ P nodes are ready at that time, 
or incomplete otherwise 

!
# complete time steps ≤ WORK(G)/P 
!
# incomplete time steps ≤ CPL(G) 

Theorem [Graham ’66]. Any 
greedy scheduler achieves 

TP ≤ WORK(G)/P + CPL(G)
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Bounding the performance of Greedy Schedulers

Combine lower and upper bounds to get  

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G) 

Corollary 1: Any greedy scheduler achieves execution 
time TP that is within a factor of 2 of the optimal time 
(since max(a,b) and (a+b) are within a factor of 2 of 
each other, for any a ≥ 0,b ≥ 0 ). 

Corollary 2:  Lower and upper bounds approach the 
same value whenever  

• There’s lots of parallelism, WORK(G)/CPL(G) >> P 

• Or there’s little parallelism,  WORK(G)/CPL(G) << P  
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Abstract Performance Metrics
• Basic Idea 

• Count operations of interest, as in big-O analysis 
• Abstraction ignores many overheads that occur on real systems 

• Calls to doWork() 
• Programmer inserts calls of the form, doWork(N), within a step to indicate 

abstraction execution of N application-specific abstract operation 
• e.g., adds, compares, stencil ops, data structure ops 

• Multiple calls dynamically add to the execution time of current step in 
computation graph 

• Abstract metrics are enabled by calling 
• HjSystemProperty.abstractMetrics.set(true); 

• If an HJ program is executed with this option, abstract metrics are printed at end of 
program execution with WORK(G), CPL(G), Ideal Parallelism = WORK(G) / CPL(G)
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Reminders

• Send email to comp322-staff@mailman.rice.edu if you did NOT 
receive a welcome email from us, or if you don’t have svn access 

• A Lab 1 help session will be held today, immediately after class 
• Watch videos and read handout for topic 1.5 for next lecture on 

Wednesday, Jan 21st 

• Complete this week’s assigned quizzes on edX by 11:59pm today 
(all quizzes for topics 1.1, 1.2, 1.3, 1.4 including last quiz titled 
“Multiprocessor Scheduling”) 

• HW1 will be assigned today, and is due on Jan 28th 

• See course web site for all work assignments and due dates 
• https://wiki.rice.edu/confluence/display/PARPROG/COMP322
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