
COMP 322: Fundamentals of
Parallel Programming

!
Lecture 3: Computation Graphs,

Ideal Parallelism

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University

!
Contact email: vsarkar@rice.edu

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 3 16 January 2015

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

One Possible Solution to Worksheet 2
(Reverse Engineering a Computation Graph)

2

1.A();

2.finish { // F1

3. async D();

4. B();

5. async {

6. E();

7. finish { // F2

8. async H();

9. F();

10. } // F2

11. G();

12. }

13. } // F1

14. C();

Observations:
• Any node with out-degree > 1 must be an

async (must have an outgoing spawn edge)
• Any node with in-degree > 1 must be an end-

finish (must have an incoming join edge
• Adding or removing transitive edges does not

impact ordering constraints

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Dynamic Finish-Async nesting structure and
Immediately Enclosing Finish (IEF)

• IEF(A3) = IEF(A4) = F2

• IEF(A1) = IEF(A2) = F1

• Module 1 handout: Listing 4 & Figure 6 (Section 1.1)

3

Task A4

finish

async async

Task A0 (Part 3)

Task A0 (Part 2)

finish
Task A0 (Part 1)

async

Task A1

async

Task A2
Task A3

F2

F1

COMP 322, Spring 2015 (V.Sarkar, E.Allen)4

Ideal Parallelism (Recap)

• Define ideal parallelism of
Computation G Graph as the
ratio, WORK(G)/CPL(G)

• Ideal Parallelism is independent
of the number of processors that
the program executes on, and
only depends on the computation
graph

1

1

1

4 1 4

1 1 1 1

31 1 1

1 1

1

1
Example:
WORK(G) = 26
CPL(G) = 11
Ideal Parallelism = WORK(G)/CPL(G) = 26/11 ~ 2.36
!

COMP 322, Spring 2014 (V.Sarkar)5

Scheduling of a Computation Graph on a
fixed number of processors: Example

1

1

1

4 41

1 1 1

31

1

1

1

1

1

1

1

A
Start
time

Proc
1

Proc
2

Proc
3

0 A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11 Completion time = 11

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

NOTE: this schedule achieved a completion time of 11,
which is the same as the CPL. Can we do better?

COMP 322, Spring 2014 (V.Sarkar)

Scheduling of a Computation Graph on a
fixed number of processors, P

• Assume that node N takes TIME(N) regardless of which
processor it executes on, and that there is no overhead for
creating parallel tasks

• A schedule specifies the following for each node
—START(N) = start time
—PROC(N) = index of processor in range 1...P

such that
—START(i) + TIME(i) <= START(j), for all CG edges from i
to j (Precedence constraint)

—A node occupies consecutive time slots in a processor (Non-
preemption constraint)

—All nodes assigned to the same processor occupy distinct
time slots (Resource constraint)

6

COMP 322, Spring 2014 (V.Sarkar)7

Greedy Schedule
• A greedy schedule is one that never forces a
processor to be idle when one or more nodes are ready
for execution
• A node is ready for execution if all its predecessors
have been executed
• Observations

—T1 = WORK(G), for all greedy schedules
—T∞ = CPL(G), for all greedy schedules

• where TP = execution time of a schedule for
computation graph G on P processors

COMP 322, Spring 2014 (V.Sarkar)8

Lower Bounds on Execution Time of
Schedules

• Let TP = execution time of a schedule for
computation graph G on P processors
—Can be different for different schedules

• Lower bounds for all greedy schedules
—Capacity bound: TP ≥ WORK(G)/P

—Critical path bound: TP ≥ CPL(G)

• Putting them together
—TP ≥ max(WORK(G)/P, CPL(G))

COMP 322, Spring 2014 (V.Sarkar)9

Upper Bound on Execution Time of Greedy
Schedules

Proof sketch:
Define a time step to be complete if

≥ P nodes are ready at that time,
or incomplete otherwise

!
complete time steps ≤ WORK(G)/P
!
incomplete time steps ≤ CPL(G)

Theorem [Graham ’66]. Any
greedy scheduler achieves

TP ≤ WORK(G)/P + CPL(G)

Start
time

Proc
1

Proc
2

Proc
3

0 A
1 B
2 C N
3 D N I
4 D N J
5 D N K
6 D Q L
7 E R M
8 F R O
9 G R P
10 H
11

COMP 322, Spring 2014 (V.Sarkar)10

Bounding the performance of Greedy Schedulers

Combine lower and upper bounds to get

max(WORK(G)/P, CPL(G)) ≤ TP ≤ WORK(G)/P + CPL(G)

Corollary 1: Any greedy scheduler achieves execution
time TP that is within a factor of 2 of the optimal time
(since max(a,b) and (a+b) are within a factor of 2 of
each other, for any a ≥ 0,b ≥ 0).

Corollary 2: Lower and upper bounds approach the
same value whenever

• There’s lots of parallelism, WORK(G)/CPL(G) >> P

• Or there’s little parallelism, WORK(G)/CPL(G) << P

COMP 322, Spring 2015 (V.Sarkar)

Abstract Performance Metrics
• Basic Idea

• Count operations of interest, as in big-O analysis
• Abstraction ignores many overheads that occur on real systems

• Calls to doWork()
• Programmer inserts calls of the form, doWork(N), within a step to indicate

abstraction execution of N application-specific abstract operation
• e.g., adds, compares, stencil ops, data structure ops

• Multiple calls dynamically add to the execution time of current step in
computation graph

• Abstract metrics are enabled by calling
• HjSystemProperty.abstractMetrics.set(true);

• If an HJ program is executed with this option, abstract metrics are printed at end of
program execution with WORK(G), CPL(G), Ideal Parallelism = WORK(G) / CPL(G)

11

COMP 322, Spring 2015 (V.Sarkar)

Reminders

• Send email to comp322-staff@mailman.rice.edu if you did NOT
receive a welcome email from us, or if you don’t have svn access

• A Lab 1 help session will be held today, immediately after class
• Watch videos and read handout for topic 1.5 for next lecture on

Wednesday, Jan 21st

• Complete this week’s assigned quizzes on edX by 11:59pm today
(all quizzes for topics 1.1, 1.2, 1.3, 1.4 including last quiz titled
“Multiprocessor Scheduling”)

• HW1 will be assigned today, and is due on Jan 28th

• See course web site for all work assignments and due dates
• https://wiki.rice.edu/confluence/display/PARPROG/COMP322

12

