
COMP 322: Fundamentals of  
Parallel Programming 

!
Lecture 35: Partitioned Global Address 

Space (PGAS) languages
Vivek Sarkar, Eric Allen 

Department of Computer Science, Rice University 
(Ack: many slides are courtesy of John Mellor-Crummey) 

!
Contact email: vsarkar@rice.edu 

!
https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322                             Lecture 35            15 April 2015



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Process/Thread
Memory

Parallel Architectures

2

Programming Models

Shared Memory

Habanero-Java 
Java Threads 

Cilk 
OpenMP 
Pthreads

MPI 
Map-Reduce 
UPC 
CAF

Distributed Memory

interconnect



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Performance and Programmability 
Concerns!

Distributed Memory

interconnect
Data movement and synchronization 
are expensive 

To minimize overheads 

• Co-locate data with processes 

• Aggregate multiple accesses to remote 
data 

• Overlap communication with 
computation 

⇒ Significant programmability 
challenges with addressing these 
overheads in a shared-nothing 
programming model like MPI

3



• Global address space 
—one-sided communication (GET/PUT) 

• Programmer has control over performance-critical factors  
—data distribution and locality control 
—computation partitioning 
—communication placement 

• Data movement and synchronization as language primitives 
—amenable to compiler-based communication optimization 

• Global view rather than local view

4

simpler than msg passing

lacking in thread-based models 
!
HJ places help with locality 
control but not data distribution

Partitioned Global Address Space Languages

Global View Local View (8 processes)



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Partitioned Global Address Space (PGAS) 
Languages

• Unified Parallel C   (extension of C) 

• Coarray Fortran      (extension of Fortran) 

• Titanium                  (extension of early version of Java) 
!

• Related efforts: newer languages developed since 2003 as part of 
the DARPA High Productivity Computing Systems (HPCS) program 
—IBM: X10 (starting point for Habanero-Java) 
—Cray: Chapel 
—Oracle/Sun: Fortress

5



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Data Distributions
• Motivation for distributions: partitioning and mapping arrays elements to processors 

• In HJlib, distributions are used to map computations to places for affinity 

• For Unified Parallel C (UPC), distributions map data onto distributed-memory parallel 
machines  (Thread = Place)

Like shared vs. private/local data in HJ, except now each datum also 
has an “affinity” with a specific thread/place

Shared

Thread 0 

Private 0

Thread 	


THREADS-1

Private 1 Private 	


THREADS-1

P
ar

ti
ti

on
ed

 	


G

lo
ba

l 	


ad

dr
es

s 
sp

ac
e

Thread 1 

P
ri

va
te

 	


Sp

ac
es

6



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Unified Parallel C (UPC)
• An explicit parallel extension of ISO C 

—a few extra keywords 
– shared, MYTHREAD, THREADS, upc_forall 

• Language features 
—partitioned global address space for shared data 

– part of shared data co-located with each thread 
—threads created at application launch 

– each bound to a CPU 
– each has some private data 

—a memory model 
– defines semantics of interleaved accesses to shared data 

—synchronization primitives 
– barriers  
– locks 
– load/store

7



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

UPC Execution Model
• Multiple threads working independently in a SPMD fashion 

—MYTHREAD specifies thread index (0..THREADS-1) 
– Like MPI processes and ranks 

—# threads specified at compile-time or program launch 

• Partitioned Global Address Space (different from MPI) 
!
!
!
!

• Threads synchronize as necessary using 
—synchronization primitives 
—shared variables

8



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Shared and Private Data
• Static and dynamic memory allocation of each type of data 

• Shared objects placed in memory based on affinity 
—shared scalars have affinity to thread 0 

– here, a scalar means a singleton instance of any type 
—by default, elements of shared arrays are allocated “round 

robin” among memory modules co-located with each thread 
(cyclic distribution)

9



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

A One-dimensional Shared Array
Consider the following data layout directive!
!
shared int y[2 * THREADS + 1]; 

For THREADS = 3, we get the following cyclic layout

Thread 0

y[3]

y[0]

y[4]

y[1]

Thread 1

zy[5]

y[2]

Thread 2

y[6]

10



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

A Multi-dimensional Shared Array

Thread 0

A[0][0]
A[1][0]
A[2][0]
A[3][0]

A[0][1]
A[1][1]
A[2][1]
A[3][1]

A[0][2]
A[1][2]
A[2][2]
A[3][2]

Thread 1 Thread 2

shared int A[4][THREADS]; 

  

For THREADS = 3, we get the following cyclic layout

11



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Shared and Private Data
Consider the following data layout directives 

shared int x; // x has affinity to thread 0 !
shared int y[THREADS];!
int z;                   // private 

For THREADS = 3, we get the following layout
Thread 0

x

z

y[0]

z

y[1]

Thread 1

zz

y[2]

Thread 2

12



block size

• Can specify a blocking factor for shared arrays to obtain block-
cyclic distributions 
—default block size is 1 element ⇒ cyclic distribution 

• Shared arrays are distributed on a block per thread basis, round 
robin allocation of block size chunks  

• Example layout using block size specifications 
—e.g., shared [2] int a[16]

COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Controlling the Layout of Shared Arrays

a[0]

a[1]

a[6]

a[7]

a[2]

a[3]

a[8]

a[9]

a[4]

a[5]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

Thread 0 Thread 1 Thread 2

13



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Blocking Multi-dimensional Data
• Consider the data declaration 

—shared [3] int A[4][THREADS];  

• When THREADS = 4, this results in the following data layout

A[0][0]
A[0][1]
A[0][2]
A[3][0]
A[3][1]
A[3][2]

A[0][3]
A[1][0]
A[1][1]
A[3][3]

A[1][2]
A[1][3]
A[2][0]

A[2][1]
A[2][2]
A[2][3]

Thread 0 Thread 1 Thread 2 Thread 3

The mapping is not pretty for most blocking factors 
14



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

A Simple UPC Program: Vector Addition
 //vect_add.c   
 #include <upc_relaxed.h>    

#define N 100*THREADS  
 
shared int v1[N], v2[N], v1plusv2[N]; 

 
void main() {  
   int i; 
  for(i=0; i<N; i++) 

      if (MYTHREAD == i % THREADS)                 
         v1plusv2[i]=v1[i]+v2[i];  

} 
  

Iteration #:

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace

Each thread executes each 
iteration to check if it has work

15



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

 A More Efficient Vector Addition

 //vect_add.c      
 #include <upc_relaxed.h>    

#define N 100*THREADS  
 
shared int v1[N], v2[N], v1plusv2[N]; 

 
void main() {  
   int i; 

    for(i = MYTHREAD; i < N; i += THREADS) 
      v1plusv2[i]=v1[i]+v2[i];  

} 
  

Iteration #:

Each thread executes only its own iterations

16

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Worksharing with upc_forall

• Distributes independent iterations across threads 

• Simple C-like syntax and semantics 
—upc_forall(init; test; loop; affinity) 

• Affinity is used to enable locality control 
—usually, map iteration to thread where the iteration’s data 

resides 

• Affinity can be  
—an integer expression, or a  
—reference to (address of) a shared object

17



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Work Sharing + Affinity with 
upc_forall

• Example 1: explicit affinity using shared references 
shared int a[100],b[100], c[100];!

int i;!

upc_forall (i=0; i<100; i++; &a[i])!

  // Execute iteration i at a[i]’s thread/place!

  a[i] = b[i] * c[i]; 

• Example 2: implicit affinity with integer expressions  
shared int a[100],b[100], c[100];!

int i;!

upc_forall (i=0; i<100; i++; i)!

  // Execute iteration i at place i%THREADS!

  a[i] = b[i] * c[i];

• Both yield a round-robin distribution of iterations
18



v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace

thread affinity for work: have 
thread i execute iteration i

Vector Addition Using upc_forall

 //vect_add.c     
 #include <upc_relaxed.h>    

#define N 100*THREADS  
 
shared int v1[N], v2[N], v1plusv2[N];  
 
void main()  
{  
   int i; 
   upc_forall(i = 0; i < N; i++; i)  
   v1plusv2[i]=v1[i]+v2[i]; 
}

Iteration #:

Each thread executes subset of global iteration 
space as directed by the affinity clause

19



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Work Sharing + Affinity with 
upc_forall

3300..39675..99
2200..29650..74
1100..19625..49
00..960..24
i*THREADS/100i*THREADSi

• Example 3: implicit affinity by chunks 
shared [25] int a[100],b[100], c[100]; 
int i; 
upc_forall (i=0; i<100; i++; (i*THREADS)/100) 
    a[i] = b[i-1] * c[i+1]; 

• Assuming 4 threads, the following results

20



Matrix-Vector Multiply (Default Distribution)
// vect_mat_mult.c 
#include <upc_relaxed.h> 
!
shared int a[THREADS][THREADS]; 
shared int b[THREADS], c[THREADS]; 
void main (void) { 
 int i, j;       
 upc_forall(i = 0; i < THREADS; i++; i) {      
  c[i] = 0;           
  for ( j= 0 ; j < THREADS; j++)            
   c[i] += a[i][j]*b[j]; 
 }    
}

21



Matrix-Vector Multiply (Better Distribution)
// vect_mat_mult.c 
#include <upc_relaxed.h> 
!
shared [THREADS] int a[THREADS][THREADS]; 
shared int b[THREADS], c[THREADS]; 
void main (void) { 
 int i, j;       
 upc_forall( i = 0 ; i < THREADS ; i++; i) {      
  c[i] = 0;           
  for ( j= 0 ; j< THREADS ; j++)            
   c[i] += a[i][j]*b[j];                
 }      
}

22



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Synchronization 
• Barriers  (blocking) 

—upc_barrier 
– like “next” operation in HJ 

• Split-phase barriers (non-blocking) 
—upc_notify 

– like explicit (non-blocking) signal on an HJ phaser 
—upc_wait 

– upc_wait is like explicit wait on an HJ phaser 
!

• Lock primitives 
—void upc_lock(upc_lock_t *l) 
—int upc_lock_attempt(upc_lock_t *l) // like trylock() 
—void upc_unlock(upc_lock_t *l)

23



Application Work in PGAS
• Network simulator in UPC (Steve Hofmeyr) 

• Barnes-Hut in UPC (Marc Snir et al)  

• Landscape analysis  
—“Contributing Area Estimation” in UPC  
 (Brian Kazian, UCB) 

• Gyrokinetic Tokamak Simulation Shifter 
code in CoArray Fortran (CAF) 
—Preissl, Wichmann, Long, Shalf,  
 Ethier, Koniges (LBNL, Cray, PPPL) 

24Slide credit: Kathy Yelick, January 2011


