COMP 322: Fundamentals of
Parallel Programming

Lecture 35: Partitioned Global Address
Space (PGAS) languages

Vivek Sarkar, Eric Allen
Department of Computer Science, Rice University
(Ack: many slides are courtesy of John Mellor-Crummey)

Contact email: vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
COMP 322 Lecture 35 15 April 2015 i*,g

Parallel Architectures

interconnect

QOO OlO| O

Shared Memory Distributed Memory

Programming Models

Habanero-Java MPI
Java Threads Map-Reduce
Cilk UPC
OpenMP O Process/Thread CAF
Pthreads Memory

2 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Performance and Programmability
Concerns

Data movement and synchronization
are expensive iInterconnect

e] ——

To minimize overheads O Q Q

e Co-locate data with processes

o Aggregate multiple accesses to remote
data

e Overlap communication with Distributed Memory
computation

= Significant programmability
challenges with addressing these
overheads in a shared-nothing
programming model like MPI

3 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Partitioned Global Address Space Languages

e Global address space
—one-sided communication (GET/PUT) simpler than msg passing

e Programmer has control over performance-critical factors
—data distribution and locality control |acking in thread-based models
—computation partitioning
—communication placement

HJ places help with locality
control but not data distribution

e Data movement and synchronization as language primitives
—amenable to compiler-based communication optimization
e Global view rather than local view

Global View Local View (8 processes) 4

Partitioned Global Address Space (PGAS)
Languages

* Unified Parallel C (extension of C)
o Coarray Fortran (extension of Fortran)

o Titanium (extension of early version of Java)

* Related efforts: newer languages developed since 2003 as part of
the DARPA High Productivity Computing Systems (HPCS) program

—IBM: X10 (starting point for Habanero-Java)
—Cray: Chapel
—Oracle/Sun: Fortress

5 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Data Distributions

e Motivation for distributions: partitioning and mapping arrays elements to processors
e In HJIib, distributions are used to map computations to places for affinity

e For Unified Parallel C (UPC), distributions map data onto distributed-memory parallel
machines (Thread = Place)

)

. ® Thread 0 Thread 1 Thread

0] o THREADS-1
e

o _ A -

=

£es Shared

0 = T

a®wr

S 0 Rrivate O Private 1 oo e Private

S B THREADS-1
T a —

a »

Like shared vs. private/local data in HJ, except now each datum also
has an “affinity” with a specific thread/place

6 COMP 322, Spring 2015 (V.Sarkar, E.Allen) %,

Unified Parallel C (UPC)

e An explicit parallel extension of ISO C
—a few extra keywords
— shared, MYTHREAD, THREADS, upc_forall

e Language features
—partitioned global address space for shared data
— part of shared data co-located with each thread
—threads created at application launch
— each bound to a CPU
— each has some private data
—a memory model
— defines semantics of interleaved accesses to shared data
—synchronization primitives
— barriers
— locks
— load/store

7 COMP 322, Spring 2015 (V.Sarkar, E.Allen) »/@}

UPC Execution Model

e Multiple threads working independently in a SPMD fashion
—MYTHREAD specifies thread index (0..THREADS-1)
— Like MPI processes and ranks
—# threads specified at compile-time or program launch

o Partitioned Global Address Space (different from MPI)

- § Thread 0 Thread 1 Thread

o oy THREADS-1
R)

25 8

e

% = g Shared

o O m©

L W _

w3 Private | Private Private

= ® 0 A THREADS-1
. O

o o

e Threads synchronize as necessary using
—synchronization primitives
—shared variables

8 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Shared and Private Data

o Static and dynamic memory allocation of each type of data

o Shared objects placed in memory based on affinity
—shared scalars have affinity to thread 0
— here, a scalar means a singleton instance of any type

—by default, elements of shared arrays are allocated “round
robin” among memory modules co-located with each thread
(cyclic distribution)

9 COMP 322, Spring 2015 (V.Sarkar, E.Allen)

A One-dimensional Shared Array

Consider the following data layout directive

shared int y[2 * THREADS + 1];

For THREADS = 3, we get the following cyclic layout

Thread 0O Thread 1 Thread 2
y[O] y[1] y[2]
y[3] y[4] y[3]
y[6]

10 COMP 322, Spring 2015 (V.Sarkar, E.Allen) %

A Multi-dimensional Shared Array

shared int A[4] [THREADS] ;

For THREADS = 3, we get the following cyclic layout

Thread O Thread 1 Thread 2
Al0][0] AlO][1. AlO][2]
A[1][0. A[1][1] A[1][2]
Al2][0. Al2][1. Al2][2
A[3][0. A[3][1] A[3][2

11 COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Shared and Private Data

Consider the following data layout directives

shared int x; // x has affinity to thread O
shared int y[THREADS];

int z; // private

For THREADS = 3, we get the following layout

Thread O Thread 1 Thread 2
X ><
y[0] y[1] y[2]
Z Z Z

12 COMP 322, Spring 2015 (V.Sarkar, E.Allen) G

Controlling the Layout of Shared Arrays

o Can specify a blocking factor for shared arrays to obtain block-
cyclic distributions

—default block size is 1 element = cyclic distribution

o Shared arrays are distributed on a block per thread basis, round
robin allocation of block size chunks

o Example layout using block size specifications

block size
—e.g., shared int a[l6]
Thread 0 Thread 1 read 2
a[0] a[2] al4]
a[1] a[3] a[s]
| a[6] | | a[8] | a[10]
a[7] a[9] a[11]

13 alts] COMP 32 a1l (V.Sarkar, E.Allen)

Blocking Multi-dimensional Data

e Consider the data declaration
—shared [3] int A[4] [THREADS];

e When THREADS = 4, this results in the following data layout

Thread 0 Thread 1 Thread 2 Thread 3
AJ0][3] Al1][2] Al2][1
A[1][0] Al1][3 A[21[2]
Af2][3]

All][1] A[2]]0]
A[3][3]

The mapping is not pretty for most blocking factors
14 COMP 322, Spring 2015 (V.Sarkar, E.Allen)

/@)K\

15

A Simple UPC Program: Vector Addition

//vect_add.c

#include <upc relaxed.h>

#define N 100*THREADS _
Iteration #:

shared int v1[N], v2[N], vlplusv2[N];

void main () {

int 1i;
for (i=0; i<N; i++)
if (== 1 % THREADS)

viplusv2[i]=v1[i]+v2[i];

Thread 0 Thread 1

0 1
2 3
v1[0] vi[1]
v1[2] v1[3] g-)
o0 o0 g
()
v2[0] v2[1] o
v2[2] v2[3] 'g)
Q
oo 0 (@)
D

viplusv2[0] v1plusv2[1]

viplusv2[2] v1plusv2|[3]

Each thread executes each

iteration to check if it has work

COMP 322, Spring 2015 (V.Sarkar, E.Allen) %,

A More Efficient Vector Addition

//vect add.c

#include <upc relaxed.h>
#define N 100*THREADS

Iteration #:

shared int v1[N], v2[N], vlplusv2[N];

void main() {
int 1i;
for(i1 = ; 1 < N; i1 += THREADS)
viplusv2[i]=v1[i]+v2[i];

Thread 0 Thread 1

0 1
2 3
v1[0] vi[1]
v1[2] v1[3] g-)
o0 o0 g
()
v2[0] v2[1] o
v2[2] v2[3] 'g)
Q
oo 0 (@)
D

viplusv2[0] v1plusv2[1]

viplusv2[2] v1plusv2|[3]

Each thread executes only its own iterations

16 COMP 322, Spring 2015 (V.Sarkar, E.Allen) %,

Worksharing with upc forall

o Distributes independent iterations across threads

o Simple C-like syntax and semantics
—upc forall(init; test; loop; affinity)

o Affinity is used to enable locality control
—usually, map iteration to thread where the iteration’s data
resides
o Affinity can be
—an integer expression, or a
—reference to (address of) a shared object

17 COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Work Sharing + Affinity with
upc forall

o Example 1: explicit affinity using shared references
shared int a[100],b[100], c¢[100];
int i;
upc_forall (i=0; i<100; i++; &a[i])
// Execute iteration i at a[i]’s thread/place
b[i] * c[1];

af[i]

o Example 2: implicit affinity with integer expressions
shared int a[100],b[100], c[100];
int i;
upc_ forall (i=0; 1<100; i++; 1)
// Execute iteration i at place i%THREADS
a[i] = b[i] * c[i];
 Both yield a round-robin distribution of iterations

18 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Vector Addition Using

thread affinity for work: have
thread | execute iteration i |Thread 0 Thread 1

//vect_add.c

: Iteration #:
#define N 100*THREADS

shared int v1[N], v2[N], vliplusv2[N];

void main ()
{
int 1i;
upc forall(i = 0; 1 < N; i++;
viplusv2[i]=v1[i]+Vv2[1];

0 1

2 3
v1[0] vi[1]
v1[2] v1[3]
v2[0] v2[1]
v2[2] v2[3]

viplusv2[0] v1plusv2[1]

viplusv2[2] v1plusv2|[3]

Each thread executes subset of global iteration
space as directed by the affinity clause

19

aoedg paleys

Work Sharing + Affinity with

upc forall
o Example 3: implicit affinity by chunks

shared [25] int a[100],b[100], c[100];

int i;

upc_forall (i=0; i<100; i++; (" THREADS)/100)
afi] = b[i-1] * c[i+1];

o Assuming 4 threads, the following results

1 1*THREADS [1*THREADS/100
0..24 0..96 0
25..49 100..196 1
50..74 200..296 2
75..99 300..396 3

20 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Matrix-Vector Multiply (Default Distribution)

// vect mat mult.c
#include <upc relaxed.h>

shared int a[THREADS] [THREADS] ;
shared int b[THREADS], c¢c[THREADS];
void main (void) {
int 1, j;
upc forall(i = 0; i < THREADS; i++; i) {
c[i] = O;
for (j= 0o ; J < THREADS; j++)
c[i] += a[i][J]1*bI[]]’

Th. O Th. 0

0|pPeaJyL

Matrix-Vector Multiply (Better Distribution)

// vect mat mult.c
#include <upc relaxed.h>

shared [THREADS] int a[THREADS] [THREADS] ;
shared int b[THREADS], c¢[THREADS];
void main (void) {
int i, j;
upc forall(i = 0 ; i < THREADS ; i++; i) {
c[i] = O;
for (j= 0 ; j< THREADS ; j++)
c[i] += a[1][J]1*b[]]’

}

Th. O

Thread O

Th. O

Synchronization

o Barriers (blocking)
—upc_barrier
— like “next” operation in HJ

o Split-phase barriers (non-blocking)
—upc_notify
— like explicit (non-blocking) signal on an HJ phaser
—upc_wait
— upc_wait is like explicit wait on an HJ phaser

e Lock primitives
—void upc_lock(upc_lock_t *I)
—int upc_lock_attempt(upc_lock_t *I) // like trylock()
—void upc_unlock(upc_lock_t *I)

23 COMP 322, Spring 2015 (V.Sarkar, E.Allen) &

Application Work in PGAS

e Network simulator in UPC (Steve Hofmeyr)
e Barnes-Hut in UPC (Marc Snir et al)

e Landscape analysis

—“Contributing Area Estimation” in UPC
(Brian Kazian, UCB)

e Gyrokinetic Tokamak Simulation Shifter
code in CoArray Fortran (CAF)

—Preissl, Wichmann, Long, Shalf,
Ethier, Koniges (LBNL, Cray, PPPL)

South Fork Eel River, CA (detail)
aaaaaaaaaaaaaa gorithm

40

35 /’
< 30 /
g /
g 25 /
g A -=-MPI-gts
.S&: 15 r/. -¥-CAF-atom
= 10 /.————l‘ --CAPF-lock

—-—./
5 —
0

4096 8192 16384 32768 65536 131072
Slide credit: Kathy Yelick, January 2011 MPI Processes / CAF images

