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Performance and Programmability 
Concerns!

Distributed Memory

interconnect
Data movement and synchronization 
are expensive 

To minimize overheads 

• Co-locate data with processes 

• Aggregate multiple accesses to remote 
data 

• Overlap communication with 
computation 

⇒ Significant programmability 
challenges with addressing these 
overheads in a shared-nothing 
programming model like MPI
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• Global address space 
—one-sided communication (GET/PUT) 

• Programmer has control over performance-critical factors  
—data distribution and locality control 
—computation partitioning 
—communication placement 

• Data movement and synchronization as language primitives 
—amenable to compiler-based communication optimization 

• Global view rather than local view
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simpler than msg passing

lacking in thread-based models 
!
HJ places help with locality 
control but not data distribution

Partitioned Global Address Space Languages

Global View Local View (8 processes)
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Partitioned Global Address Space (PGAS) 
Languages

• Unified Parallel C   (extension of C) 

• Coarray Fortran      (extension of Fortran) 

• Titanium                  (extension of early version of Java) 
!

• Related efforts: newer languages developed since 2003 as part of 
the DARPA High Productivity Computing Systems (HPCS) program 
—IBM: X10 (starting point for Habanero-Java) 
—Cray: Chapel 
—Oracle/Sun: Fortress
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Data Distributions
• Motivation for distributions: partitioning and mapping arrays elements to processors 

• In HJlib, distributions are used to map computations to places for affinity 

• For Unified Parallel C (UPC), distributions map data onto distributed-memory parallel 
machines  (Thread = Place)

Like shared vs. private/local data in HJ, except now each datum also 
has an “affinity” with a specific thread/place
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Unified Parallel C (UPC)
• An explicit parallel extension of ISO C 

—a few extra keywords 
– shared, MYTHREAD, THREADS, upc_forall 

• Language features 
—partitioned global address space for shared data 

– part of shared data co-located with each thread 
—threads created at application launch 

– each bound to a CPU 
– each has some private data 

—a memory model 
– defines semantics of interleaved accesses to shared data 

—synchronization primitives 
– barriers  
– locks 
– load/store
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UPC Execution Model
• Multiple threads working independently in a SPMD fashion 

—MYTHREAD specifies thread index (0..THREADS-1) 
– Like MPI processes and ranks 

—# threads specified at compile-time or program launch 

• Partitioned Global Address Space (different from MPI) 
!
!
!
!

• Threads synchronize as necessary using 
—synchronization primitives 
—shared variables
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Shared and Private Data
• Static and dynamic memory allocation of each type of data 

• Shared objects placed in memory based on affinity 
—shared scalars have affinity to thread 0 

– here, a scalar means a singleton instance of any type 
—by default, elements of shared arrays are allocated “round 

robin” among memory modules co-located with each thread 
(cyclic distribution)
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A One-dimensional Shared Array
Consider the following data layout directive!
!
shared int y[2 * THREADS + 1]; 

For THREADS = 3, we get the following cyclic layout

Thread 0

y[3]

y[0]

y[4]

y[1]

Thread 1

zy[5]

y[2]

Thread 2

y[6]
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A Multi-dimensional Shared Array

Thread 0

A[0][0]
A[1][0]
A[2][0]
A[3][0]

A[0][1]
A[1][1]
A[2][1]
A[3][1]

A[0][2]
A[1][2]
A[2][2]
A[3][2]

Thread 1 Thread 2

shared int A[4][THREADS]; 

  

For THREADS = 3, we get the following cyclic layout
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Shared and Private Data
Consider the following data layout directives 

shared int x; // x has affinity to thread 0 !
shared int y[THREADS];!
int z;                   // private 

For THREADS = 3, we get the following layout
Thread 0

x

z

y[0]

z

y[1]

Thread 1

zz

y[2]

Thread 2
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block size

• Can specify a blocking factor for shared arrays to obtain block-
cyclic distributions 
—default block size is 1 element ⇒ cyclic distribution 

• Shared arrays are distributed on a block per thread basis, round 
robin allocation of block size chunks  

• Example layout using block size specifications 
—e.g., shared [2] int a[16]
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Controlling the Layout of Shared Arrays

a[0]

a[1]

a[6]

a[7]

a[2]

a[3]

a[8]

a[9]

a[4]

a[5]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

Thread 0 Thread 1 Thread 2

13



COMP 322, Spring 2015 (V.Sarkar, E.Allen)

Blocking Multi-dimensional Data
• Consider the data declaration 

—shared [3] int A[4][THREADS];  

• When THREADS = 4, this results in the following data layout

A[0][0]
A[0][1]
A[0][2]
A[3][0]
A[3][1]
A[3][2]

A[0][3]
A[1][0]
A[1][1]
A[3][3]

A[1][2]
A[1][3]
A[2][0]

A[2][1]
A[2][2]
A[2][3]

Thread 0 Thread 1 Thread 2 Thread 3

The mapping is not pretty for most blocking factors 
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A Simple UPC Program: Vector Addition
 //vect_add.c   
 #include <upc_relaxed.h>    

#define N 100*THREADS  
 
shared int v1[N], v2[N], v1plusv2[N]; 

 
void main() {  
   int i; 
  for(i=0; i<N; i++) 

      if (MYTHREAD == i % THREADS)                 
         v1plusv2[i]=v1[i]+v2[i];  

} 
  

Iteration #:

v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace

Each thread executes each 
iteration to check if it has work
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 A More Efficient Vector Addition

 //vect_add.c      
 #include <upc_relaxed.h>    

#define N 100*THREADS  
 
shared int v1[N], v2[N], v1plusv2[N]; 

 
void main() {  
   int i; 

    for(i = MYTHREAD; i < N; i += THREADS) 
      v1plusv2[i]=v1[i]+v2[i];  

} 
  

Iteration #:

Each thread executes only its own iterations
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v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace
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Worksharing with upc_forall

• Distributes independent iterations across threads 

• Simple C-like syntax and semantics 
—upc_forall(init; test; loop; affinity) 

• Affinity is used to enable locality control 
—usually, map iteration to thread where the iteration’s data 

resides 

• Affinity can be  
—an integer expression, or a  
—reference to (address of) a shared object
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Work Sharing + Affinity with 
upc_forall

• Example 1: explicit affinity using shared references 
shared int a[100],b[100], c[100];!

int i;!

upc_forall (i=0; i<100; i++; &a[i])!

  // Execute iteration i at a[i]’s thread/place!

  a[i] = b[i] * c[i]; 

• Example 2: implicit affinity with integer expressions  
shared int a[100],b[100], c[100];!

int i;!

upc_forall (i=0; i<100; i++; i)!

  // Execute iteration i at place i%THREADS!

  a[i] = b[i] * c[i];

• Both yield a round-robin distribution of iterations
18



v1[0] v1[1]

v1[2] v1[3]

v2[0] v2[1]

v2[2] v2[3]

v1plusv2[0] v1plusv2[1]

v1plusv2[2] v1plusv2[3]

Thread 0

0
2

Thread 1

1
3

…

…

…

S
hared S

pace

thread affinity for work: have 
thread i execute iteration i

Vector Addition Using upc_forall

 //vect_add.c     
 #include <upc_relaxed.h>    

#define N 100*THREADS  
 
shared int v1[N], v2[N], v1plusv2[N];  
 
void main()  
{  
   int i; 
   upc_forall(i = 0; i < N; i++; i)  
   v1plusv2[i]=v1[i]+v2[i]; 
}

Iteration #:

Each thread executes subset of global iteration 
space as directed by the affinity clause
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Work Sharing + Affinity with 
upc_forall

3300..39675..99
2200..29650..74
1100..19625..49
00..960..24
i*THREADS/100i*THREADSi

• Example 3: implicit affinity by chunks 
shared [25] int a[100],b[100], c[100]; 
int i; 
upc_forall (i=0; i<100; i++; (i*THREADS)/100) 
    a[i] = b[i-1] * c[i+1]; 

• Assuming 4 threads, the following results
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Matrix-Vector Multiply (Default Distribution)
// vect_mat_mult.c 
#include <upc_relaxed.h> 
!
shared int a[THREADS][THREADS]; 
shared int b[THREADS], c[THREADS]; 
void main (void) { 
 int i, j;       
 upc_forall(i = 0; i < THREADS; i++; i) {      
  c[i] = 0;           
  for ( j= 0 ; j < THREADS; j++)            
   c[i] += a[i][j]*b[j]; 
 }    
}
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Matrix-Vector Multiply (Better Distribution)
// vect_mat_mult.c 
#include <upc_relaxed.h> 
!
shared [THREADS] int a[THREADS][THREADS]; 
shared int b[THREADS], c[THREADS]; 
void main (void) { 
 int i, j;       
 upc_forall( i = 0 ; i < THREADS ; i++; i) {      
  c[i] = 0;           
  for ( j= 0 ; j< THREADS ; j++)            
   c[i] += a[i][j]*b[j];                
 }      
}
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Synchronization 
• Barriers  (blocking) 

—upc_barrier 
– like “next” operation in HJ 

• Split-phase barriers (non-blocking) 
—upc_notify 

– like explicit (non-blocking) signal on an HJ phaser 
—upc_wait 

– upc_wait is like explicit wait on an HJ phaser 
!

• Lock primitives 
—void upc_lock(upc_lock_t *l) 
—int upc_lock_attempt(upc_lock_t *l) // like trylock() 
—void upc_unlock(upc_lock_t *l)
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Application Work in PGAS
• Network simulator in UPC (Steve Hofmeyr) 

• Barnes-Hut in UPC (Marc Snir et al)  

• Landscape analysis  
—“Contributing Area Estimation” in UPC  
 (Brian Kazian, UCB) 

• Gyrokinetic Tokamak Simulation Shifter 
code in CoArray Fortran (CAF) 
—Preissl, Wichmann, Long, Shalf,  
 Ethier, Koniges (LBNL, Cray, PPPL) 

24Slide credit: Kathy Yelick, January 2011


